

TIC LIBERTY

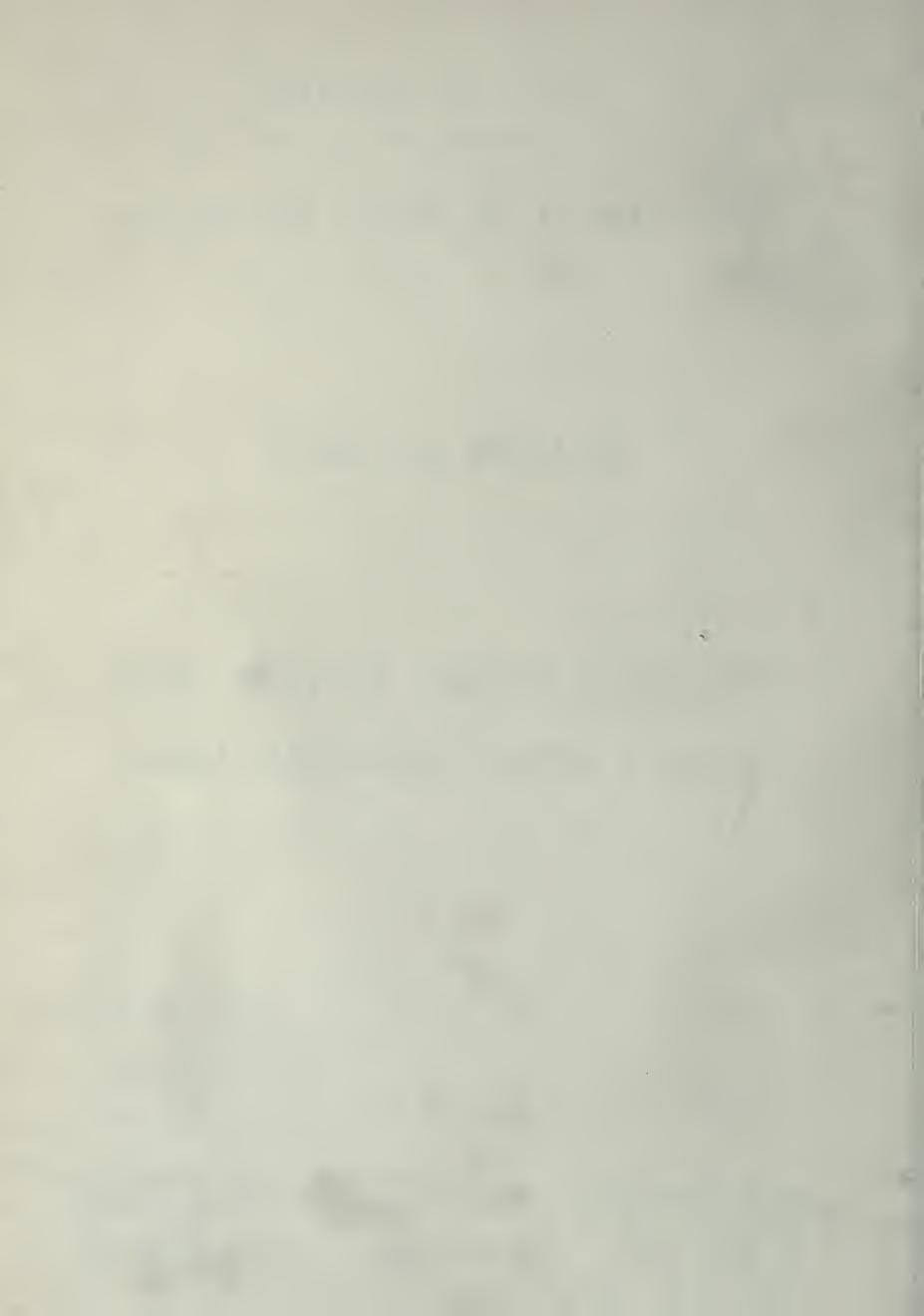
STATE OF CALIFORNIA
The Resources Agency

epartment of Water Resources

BULLETIN No. 130-70

HYDROLOGIC DATA: 1970

Volume I: NORTH COASTAL AREA


DECEMBER 1971

GOV'T. DUCS. - LIBRARY

NORMAN B. LIVERMORE, JR. Secretary for Resources he Resources Agency

RONALD REAGAN
Governor
State of California

STATE OF CALIFORNIA The Resources Agency

Department of Water Resources

BULLETIN No. 130-70

HYDROLOGIC DATA: 1970

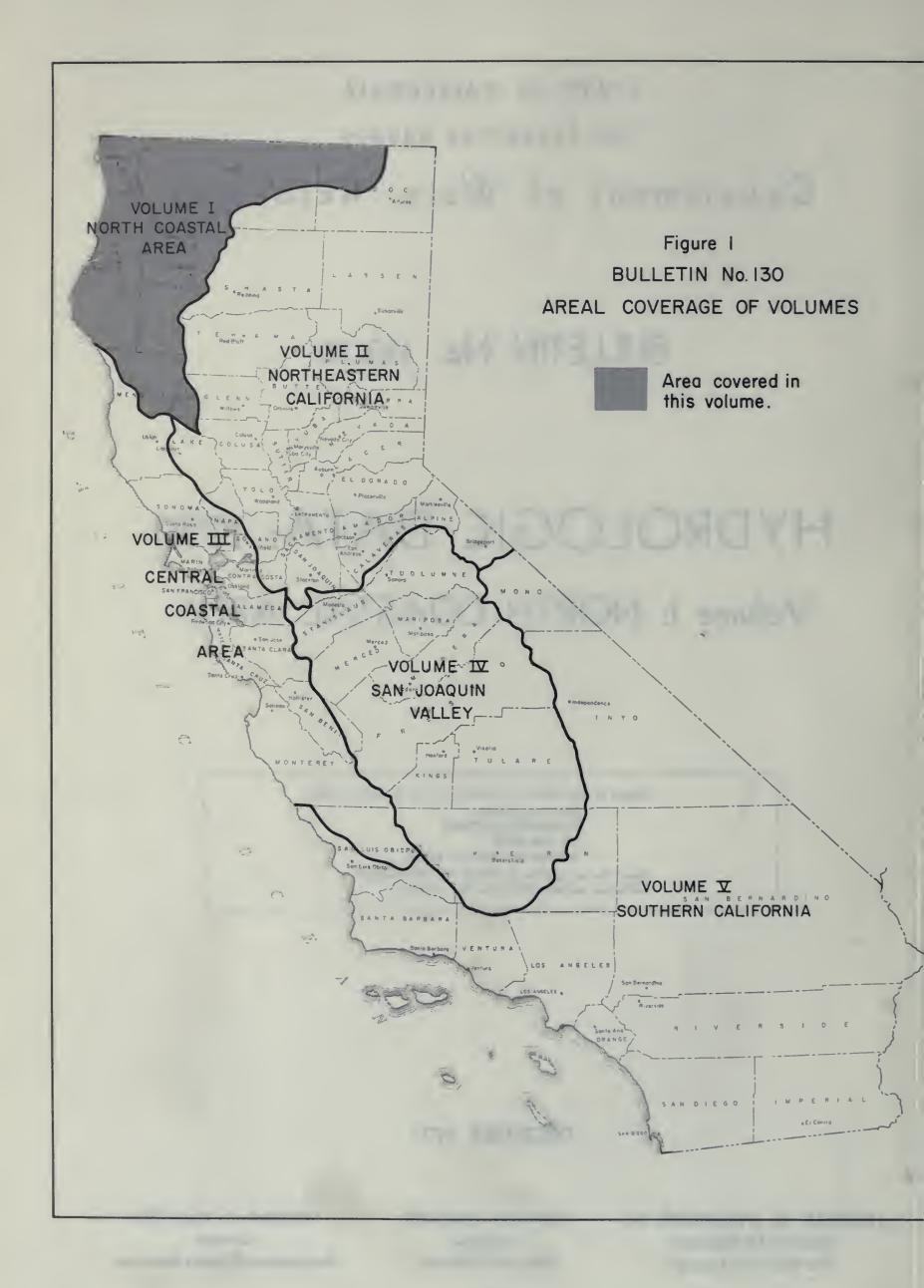
Volume I: NORTH COASTAL AREA

Copies of this bulletin at \$2.50 each may be ordered from:

State of California DOCUMENTS SECTION P.O. Box 20191 Sacramento, California 95820

Make checks payable to STATE OF CALIFORNIA. California residents add 5 percent sales tax.

DECEMBER 1971


NORMAN B. LIVERMORE, JR.
Secretary for Resources
The Resources Agency

RONALD REAGAN
Governor
State of California

WILLIAM R. GIANELLI

Director

Department of Water Resources

FOREWORD

The hydrologic data programs of the Department of Water
Resources supplement the data collection activities of other agencies
and help satisfy needs of these agencies for data on the quality and
quantity of water in the State. Bulletin No. 130-70 presents accurate,
comprehensive, and timely hydrologic data which provide a more complete
knowledge of the factors affecting our environment and are prerequisites
for effective planning, design, construction, and operation of water
facilities.

The Bulletin No. 130 series is published annually in five volumes. Each volume presents hydrologic data for one of five reporting areas of the State. These areas are delineated on the map on the opposite page.

William R. Gianelli, Director Department of Water Resources

The Resources Agency State of California

November 8, 1971

METRIC CONVERSION TABLE

E &	10	1 1	CI	II M	IT
E n	(U	LI	2 U	UN	1 1

EQUIVALENT METRIC UNIT

Inch (in.)

Foot (ft.)

Mile (mi.)

Acre

Square mile (sq. mi.)

U. S. gallon (gal.)

Acre-foot (acre-ft.)

U. S. gallon per minute (gpm)

Cubic feet per second (cfs)

Part per million (ppm)

Part per billion (ppb)

Part per trillion (ppt)

Equivalent per million (epm)

Degrees Fahrenheit (°F)

2.54 Centimeters

0.3048 Meter

1.609 Kilometers

0.405 Hectare

2.590 Square kilometer

3.785 Liters

1,233.5 Cubic meters

0.0631 Liter per second

1.7 Cubic meters per minute

Milligram per liter (mg/1)

Microgram per liter (ug/1)

Nanogram per liter (ng/1)

Milliequivalent per liter (me/1)

Degrees Celsius or Degrees Centigrade (°C) = (°F - 32°) 5/9

TABLE OF CONTENTS

		Tage
AREAL COVERAGE (OF VOLUMES	· ii
FOREWORD		· iii
METRIC CONVERSION	ON TABLE	· iv
ABSTRACT		· vi
ACKNOWLEDGMENTS		· vi
ORGANIZATION		. vii
	APPENDIXES	
A DOWNDTY A . CT T	IMATOLOGICAL DATA	
Figure A-l		
Table A-1	Index of Climatological Stations	
Table A-2	Precipitation Data	
Table A-3 Table A-4	Storage Gage Precipitation Data	• 7
Table A-4	Evaporation Data	. 8
APPENDIX B: SUF	REACE WATER MEASUREMENTS	. 11
Figure B-1	Surface Water Measurement Stations	. 10
Table B-1	Annual Unimpaired Runoff	. 12
Table B-2	Monthly Unimpaired Runoff	
Table B-3	Daily Mean Discharge	. 16
APPENDIX C: GRO	OUND WATER MEASUREMENTS	. 21
Figure C-1	Ground Water Basins, Water Level Measurements	. 20
Table C-1	Average Change of Ground Water Levels and	. 20
	Summary of Well Measurements Reported	. 23
Table C-2	Ground Water Levels at Wells	
APPENDIX D: SUF	TACE WATER QUALITY	. 27
Figure D-1	Curfo on Mator Compline Stations	. 26
Table D-1	Surface Water Sampling Stations	
Table D-2	Mineral Analyses of Surface Water	_
Table D-3	Trace Element Analyses of Surface Water	
· ·	Miscellaneous Constituents in Surface Water .	
	Nutrients in Surface Water	
TOO TO D.		74
APPENDIX E: GRO	OUND WATER QUALITY	. 49
_	Ground Water Basins, Water Quality Samples .	. 48
Table E-1	Mineral Analyses of Ground Water	
Table E-2	Trace Element Analyses of Ground Water	• 55

ABSTRACT

The report contains tables showing data on climate, surface water flow, ground water levels, and surface and ground water quality in the North Coastal area during the 1969-70 water year. Figures show the location of climatological stations, surface water measurement stations, surface water sampling stations, and ground water basins.

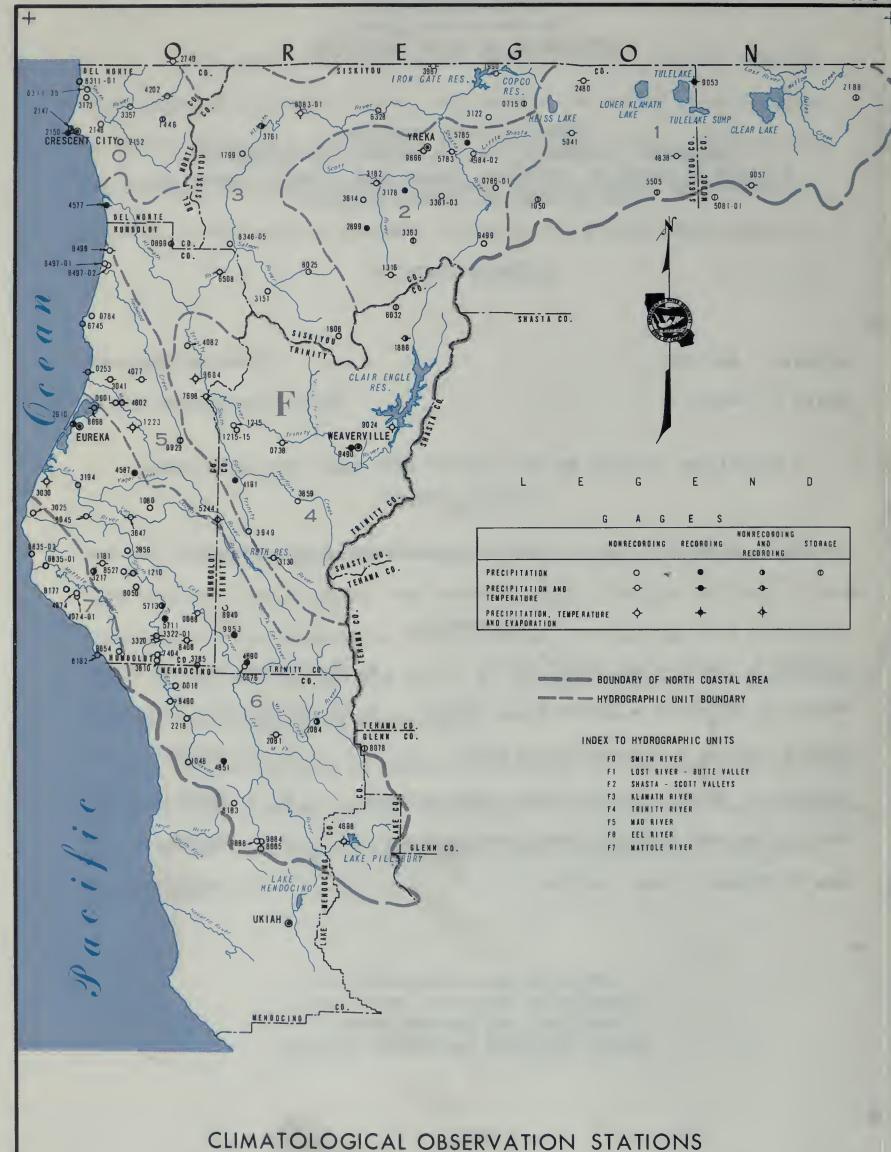
ACKNOWLEDGMENTS

In the preparation of this report, valuable assistance and contributions were received from several public agencies and many private cooperators. The cooperation of the National Weather Service (formerly the U. S. Weather Bureau) and the U. S. Geological Survey was particularly helpful and is gratefully appreciated.

A special note of thanks is extended to the many loyal and dedicated weather observers whose unselfish efforts have contributed immeasurably to our knowledge of historical weather conditions in the North Coastal area.

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

RONALD REAGAN, Governor


NORMAN B. LIVERMORE, JR., Secretary for Resources
WILLIAM R. GIANELLI, Director, Department of Water Resources
JOHN R. TEERINK, Deputy Director

NORTHERN DISTRICT

Albert J. Bolcini · · · · · · · · · District Engineer
Wayne S. Gentry Chief, Operations Branch
Activities covered by this report were under the supervision
of
Robert F. Middleton, Jr Chief, Surface Water & Flood Control Section
Assisted by
Linwood L. Bates - Red Bluff Office W. R. Engineering Associate
Walter D. McIntyre - Sutter Field Office . W. R. Engineering Associate
John M. Miller - Climatological Data W. R. Technician II
Charles G. Hodge - Surface Water Measurements W. R. Technician II
Seth K. Barrett - Ground Water Measurements W. R. Technician II
Lee R. Gibson - Water Quality W. R. Technician II

Reviewed and coordinated by
Division of Resources Development
Environmental Quality Branch
Water Resources Evaluation Section

APPENDIX A

CLIMATOLOGICAL DATA

This appendix summarizes monthly precipitation, wind movement, and evaporation data for the North Coastal area from July 1, 1969, to September 30, 1970. Storage gage data are reported as annual precipitation. The appendix contains all weather data collected by cooperating agencies and local observers at 121 stations, with the exception of the observed air temperature data.

Daily climatologic data, including temperatures, together with local conditions and qualifying remarks, are available in the files of the Department of Water Resources.

To insure accuracy, stations are normally inspected either semiannually or annually to see that the equipment is properly maintained and that observations are generally taken in accordance with National Weather Service standards.

Each station in this appendix has been assigned an identification number. The letter and first digit denote the drainage basin as shown below. The remaining digits denote the alphabetical sequence of the station.

North Coastal Area

FO - Smith River F4 - Trinity River

F1 - Lost River-Butte Valley F5 - Mad River

F2 - Shasta-Scott Valleys F6 - Eel River

F3 - Klamath River F7 - Mattole River

TABLE A-1 INDEX OF CLIMATOLOGICAL STATIONS

An explanation of the column headings and code symbols follows:

40-Acre Tract - This denotes the location of the station within the section in which it is located. The letter code is derived from the diagram to the right.

D	С	В	A
E	F	G	Н
М	L	K	J
N	P	Q	R

Base and Meridian - The code for this column is as follows:

- H Humboldt Base and Meridian
- M Mount Diablo Base and Meridian

Cooperator Number - This number is assigned from the following list:

- 000 Private Cooperators
- 006 Northwestern Pacific Railroad
- 007 California-Oregon Power Company (COPCO) 804 California Department of Parks and Recreation
- 808 California Division of Forestry
- 809 California Division of Highways
- 900 National Weather Service (Climatological Data)
- 901 Corps of Engineers, San Francisco District
- 903 Corps of Engineers, Sacramento
- 905 U. S. Forest Service
- 907 State Climatologist

Cooperator's Index Number - This is the number assigned to the station by the agency responsible for, or handling the records of, the station. The National Weather Service number is only shown in this column when it differs from the alpha order number.

County - This is a standard code for California counties; those counties used in this appendix are shown below:

County	
Del Norte	08
Glenn	11
Humboldt	12
Lake	17
Mendocino	23
Modoc	25
Siskiyou	47
Trinity	53

TABLE A-1

INDEX OF CLIMATOLOGICAL STATIONS FOR 1969-70

NORTH COASTAL AREA

	Station			hip	9 (7	Meridian	nde		nde		ofor	st ser	on	ord ed	Missing	Code
Number	Nome	Elevation (In Feet)	Section	Township	Range	40-Acre Bose & M	- Latitude	11 0	- Langitude	11	Cooperator	Cooperator's Index Number	Record	Record	Years M	County
F6 0018 F6 0088 F5 0253 F3 0715 F4 0738	ADANAC LODGE ALDERPOINT ARCATA A P BESWICK 7 S BIG BAR RANGER STA	1100 435 217 6140 1270	SEC 14 SEC 27 SEC 19 SEC 33 SEC 05	T23N T03S T07N T47N T33N	R17W R05E R01E R03W R12W	H M 39 H 40 Q H 40 M 41 M 40	50 11 58 52 44	48 123 00 123 18 124 00 122 54 123	42 36 05 14 14	00 00 24 00 42	000 900 000 900 900		1950 1940 1957 1952 1943			23 12 12 47 53
F5 0764 F2 0786-01 F3 0899 F5 0901 F4 0929	BIG LAGOON BIG SPRINGS 4 E BLUE CREEK MIN LO BLUE LAKE BOARDCAMP MIN	100 2955 4870 105 4500	SEC 18 SEC 05 SEC 30 SEC 30 SEC 26	T09N T43N T12N T06N T04N	ROLE ROLE ROLE ROLE ROLE	R H 41 R M 41 R H 41 A H 40 H 40	09 35 23 52 42	36 124 30 122 42 123 54 123 12 123	05 19 45 59 42	54 42 54 12 00	000 000 900 000 000	PN2125	1947 1960 1960 1951 1963			12 47 08 12 12
F6 1046 F1 1050 F6 1080 F6 1181 F6 1210	BRANSCOMB 2 NW BRAY 10 WSW BRIDGEVILLE 4 NNW BULL CREEK BURLINGTON ST PARK	1480 5759 2050 410 200	SEC 09 SEC 24 SEC 27 SEC 36 SEC 12	T21N T43N TO2N TO1S TO2S	R16W R03W R03E R01E R02E	M M 39 M 41 H 40 H H 40 D H 40	41 34 31 21 18	12 123 00 122 00 123 00 124 30 123	39 08 49 06 54	36 00 00 30 24	900 900 900 000 000		1959 1951 1954 1960 1950			23 47 12 12 12
F4 1215 F4 1215-15 F5 1223 F2 1316 F0 1446	BURNT RANCH 1S BURNT RANCH HMS BUTLER VALLEY RCH CALLAHAN RANGER STA CAMP SIX LOOKOUT	2150 1500 420 3136 3700	SEC 23 SEC 14 SEC 36 SEC 21 SEC 31	TO5N TO5N TO5N T4ON T17N	ROSE ROSE ROSE ROSE	E H 40 F H 40 H 40 M 41 B M 41	47 48 46 18 49	48 123 30 123 123 00 122 48 123	28 28 54 48 52	48 30 00 24	900 000 900 900 000		1945 1963 1970 1943 1963			53 53 12 47 08
F3 1606 F3 1799 F4 1886 F3 1990 F6 2081	CECILVILLE 5 SE CLEAR CREEK COFFEE CREEK RS COPCO DAM NO 1 COVELO	2980 975 2500 2700 1385	SEC 12 SEC 07 SEC 06 SEC 29 SEC 12	T37N T15N T37N T48N T22N	R11W ROTE ROTW RO4W R13W	M 41 H H 41 M 41 P M 41 M 39	06 42 05 59 47	00 123 30 123 122 00 122 00 123	03 26 42 20 15	00 54 00 00	900 900 900 900 900		1954 1959 1960 1928 1921			47 47 53 47 23
F6 2084 F0 2147 F0 2148 F0 2150 F0 2152	COVELO EFL RIVER RS CRESCENT CITY IN CRESCENT CITY 7 ENE CRESCENT CITY HMS CRESCENT CITY 11 E	1514 40 120 50 360	SEC 28 SEC 20 SEC 08 SEC 20 SEC 30	T23N T16N T16N T16N T16N	R11W R01W R01E R01W R02E	M 39 H 41 H 41 H 41 B H 41	50 46 48 46 45	00 123 00 124 00 124 00 124 18 123	05 12 05 12 59	00 00 00 00 30	900 900 900 900 900		1940 1885 1913 1941 1947			23 08 08 08 08
F1 2188 F6 2218 F1 2480 F0 2749 F2 2899	CROWDER FLAT CUMMINGS DORRIS INSPECT STA ELK VALLEY ETNA	5175 1270 4240 1711 2912	SEC 20 SEC 21 SEC 36 SEC 34 SEC 28	T47N T23N T48N T19N T42N	R11E R16W RO1W RO4E RO9W	K M 41 M 39 R M 41 H 42 M 41	53 50 57 00 28	00 120 00 123 18 121 00 123 00 122	44 38 54 43 54	00 00 30 00 00	000 900 000 900 900	PN2188	1958 1927 1959 1938 1935			25 23 47 08 47
F6 2910 F7 3025 F6 3030 F5 3041 F3 3122	EUREKA WB CITY FERNDALE 8 SSW FERNDALE 2NW FIELDBROOK 4 D RCH FOOTHILL SCHOOL	43 1445 10 285 2960	SEC 22 SEC 06 SEC 34 SEC 36 SEC 25	TOIN TOIN TOIN	RO2W RO1E		48 29 35 56 48	124 30 124 54 124 36 124 42 122	20 16	24 36 06 18	900 900 900 000 000		1878 1959 1963 1956 1962			12 12 12 12 12 47
F4 3130 F3 3151 F0 3173 F2 3176 F2 3182	FOREST GLEN FORKS OF SALMON FORT DICK FORT JONES 6 ESE FORT JONES RANGER STA	2340 1270 46 3324 2720	SEC 22 SEC 24 SEC 14 SEC 12 SEC 02	TOIS TION TITN T43N T43N	ROLW ROSW	H 41 M 41	23 15 52 35 36	00 123 12 123 00 124 00 122 00 122		00 00 00 00 00	900 900 900 900 900		1930 1959 1951 1941 1936			53 47 08 47 47
F6 3194 F6 3217 F6 3320 F6 3322-01 F0 3357	FORTUNA FOX CAMP GARBERVILLE GARVERVILLE HMS GASQUET RANGER STA	60 2500 340 540 384	SEC 35 SEC 09 SEC 24 SEC 24 SEC 21	TO3N TO2S TO4S TO4S T17N		Q H 40 R H 40 H 40 G H 40 N H 41	06 06		48		000 804 900 809 900		1955 1960 1938 1935 1940			12 12 12 12 08
F2 3361-03 F2 3363 F2 3614 F6 3647 F3 3761	GAZELLE - EPPERSON GAZELLE LOOKOUT GREENVIEW GRIZZLY CRK REDWOOD HAPPY CAMP RANGER STA	2760 5200 2818 500 1090	SEC 17 SEC 08 SEC 29 SEC 11 SEC 11	T43N T41N T43N T01N T16N	ROGW ROGW ROGE ROGE		34 24 33 29 48	18 122 30 122 00 122 00 123 00 123	33 40 54 47 23	12 30 00 00 00	000 000 900 900 900		1950 1956 1943 1963 1914			47 47 47 12 47
F6 3785 F4 3859 F4 3949 F6 3956 F3 3987	HARRIS 7 SSE HAYFORK RANGER STA HIDDEN VALLEY RANCH HIGH ROCK HILTS	1910 2340 1978 900 2900	SEC 27 SEC 12 SEC 32 SEC 15 SEC 23	TO5S T31N TO1N TO1S T48N	ROSE R12W ROTE ROSE ROTW	N H 39 R M 40 M H 40 K H 40 M 42	22	2 ¹ 123 00 123 5 ¹ 123 18 123 00 122	56		000 900 000 808 900		1953 1915 1959 1960 1939	1967		23 53 53 12 47
F7 4074 F7 4074-01 F5 4077 F4 4082 F4 4191	HONEYDEW 2 WSW HONEYDEW HUNTER HONOR CAMP 42 HOOPA HYAMPOM	380 380 1875 350 1260	SEC 02 SEC 02 SEC 31 SEC 25 SEC 25	T03S T03S T07N T08N T03N	ROLW ROJE ROJE ROGE	К H 40 Н 41	14 14 56 03 37	18 124 18 124 48 123 00 123 00 123	09 09 52 40 28	00 06 42 00 00	900 000 000 900 900		1953 1955 1956 1941 1940			12 12 12 12 53
F0 4202 F3 4577 F6 4587 F5 4602 F6 4690	IDLEWILD HMS KLAMATH KNEELAND 10 SSE KORBEL LAKE MOUNTAIN	1250 25 2356 150	SEC 06 SEC 15 SEC 13 SEC 28 SEC 21	T17N T13N T03N T06N T05S	ROLE ROSE	H 40 P H 40	38 52	00 123 00 124 00 123 00 123 00 123	54 57	12 00 00 30 00	900 900 900 900 900		1946 1941 1954 1937 1939	1969		08 08 12 12 53

TABLE A-1 (CONTINUED)

INDEX OF CLIMATOLOGICAL STATIONS FOR 1969-70

NORTH COASTAL AREA

	Station	otion ee1)	noi	ship	ge	40-Acre Tract	Meridion	Latitude		tude		ratar ber	otor's ex iber	Record Begon	Record	Aissing	Code
Number	Nome	Elevation (In Feet)	Section	Township	Range	ΙĕΙ	Bose &	- Loti	11 0	- Longitude	tı	Cooperator	Cooperator's Index Number	Rec	Rec	Years Missing	County
F6 4698 F1 4838 F6 4851 F2 4984-02 F1 5081-01	LAKE PILLSBURY NO 2 LAVA BEDS NAT MON LAYTONVILLE LITTLE SHASTA LONG BELL STATION	1740 4770 1640 2725 4375	SEC 10 SEC 28 SEC 01 SEC 26 SEC 20	T18N T45N T21N T45N T42N	R15W R05W		M 39 M 41 M 39 M 41 M 41	25 43 42 43 28	122 48 121 00 123 00 122 00 121		00	900 900 900 000 000		1964 1940 1940 1960 1958	1970	06	17 47 23 47 25
F5 5244 F1 5505 F6 5676 F6 5711 F6 5713	MAD RIVER RANGER STA MEDICINE LAKE MINA 3 NW MIRANDA 4 SE MIRANDA SPENGLER RCH	2775 6660 2875 263 400	SEC 17 SEC 10 SEC 28 SEC 30 SEC 19	TO1N T43N T05S T03S T03S	ROSE ROSE ROSE ROSE ROSE	А	м 41	27 35 00 11 12	00 123 00 121 06 123 00 123 123	23 47	00 30 00	900 900 000 900 900		1943 1946 1927 1964 1939			53 47 53 12 12
F2 5783 F2 5785 F1 5941 F4 6032 F6 6050	MONTAGUE 3 E MOUNT HEBRON R S MUMBO BASIN MYERS FLAT	2500 2640 4250 5700 190	SEC 27 SEC 18 SEC 32 SEC 35 SEC 30	T45N T45N T46N T39N T02S	RO6W RO1W RO6W RO3E	Q E	M 41 M 41 M 41 M 41 H 40	43 45 47 12 15	42 122 00 122 00 122 00 122 40 123	28	00	000 900 900 900 000	045783	1888 1948 1942 1946 1950		05	47 47 47 53 12
F3 6328 F6 6408 F5 6497-01 F5 6497-02 F5 6498	OAK KNOLL RANGER STA OLD HARRIS ORICK 3 NNE ORICK ARCATA REDWOOD ORICK PRAIRIE CREEK	1963 2225 50 75 161	SEC 12 SEC 30 SEC 22 SEC 22 SEC 02	T46N TO4S T11N T11N T11N	ROLE	G K K	M 41 H 40 H 41 H 41 H 41	50 05 19 19 22	00 122 00 123 24 124 24 124 00 124	51 39 02 02 01	42 30 36	900 000 000 000 900		1942 1956 1950 1954 1937			47 12 12 12 12
F3 6508 F5 6745 F7 6835-01 F7 6835-02 F6 6976	ORLEANS PATRICKS PT ST PARK PETROLIA PETROLIA 4 NW PLASKETT	403 250 175 900 6580	SEC 31 SEC 26 SEC 03 SEC 19 SEC 27	TIIN TO9N TO2S TO1S T22N	RO2W	L L D A	H 41 H 40 H 40 M 39	18 08 19 22 44	00 123 12 124 30 124 24 124 12 122	32 09 16 18 51	00 48 30	900 804 000 000		1885 1947 1958 1953 1960			12 12 12 12 11
F6 7404 F3 8025 F6 8045 F3 8083-01 F7 8162	RICHARDSON GROVE SAWYERS BAR R S SCOTIA SEIAD VALLEY R S SHELTER COVE	500 2169 139 1371 55	SEC 13 SEC 20 SEC 07 SEC 11 SEC 16	T05S T40N T01N T46N T05S	RO3E R11W RO1E R12W RO1E	R	H 40 M 41 H 40 M 41 H 40	02 18 29 50 02	123 00 123 00 124 36 123 124	06	00 00 42	900 900 900 905 900		1961 1931 1926 1953 1959			12 47 12 47 12
F6 8163 F0 8311-01 F0 8311-35 F3 8346-05 F6 8490	SHERWOOD VALLEY SMITH RIVER 2 WNW SMITH RIVER SOMESBAR UKONOM R S STANDISH HICKEY PARK	2170 195 55 727 850	SEC 32 SEC 21 SEC 26 SEC 33 SEC 03	T20N T18N T18N T12N T23N	ROLW ROSE	A	M 39 H 41 H 41 H 41 M 39	32 56 55 23 52	36 123 30 124 124 00 123 30 123	26 10 08 28 43	42		PN8919	1958 1951 1970 1965 1949	1969		23 08 08 12 23
F6 8668 F4 9024 F1 9053 F1 9057 F7 9177	SUNNY BRAE TRINITY DAM VISTA PT TULELAKE TULELAKE INSP STA UPPER MATTOLE	70 2500 4035 4408 255	SEC 33 SEC 16 SEC 06 SEC 31 SEC 33				M 40 M 41 M 41	58 36	00 124 00 122 00 121 121 00 124	46 28 12	00	900 900 000	049057	1965 1959 1932 1953 1886	1969		12 53 47 25 12
F4 9490 F2 9499 F6 9527 F7 9654 F6 9684	WEAVERVILLE RANGER S WEED FD WEOTT 2 SE WHITEHORN WILLITS 1 NE	2050 3593 600 1050 1350	SEC 12 SEC 01 SEC 12 SEC 15 SEC 17	T41N T02S T05S	RO2E	M H E	H 40 M 40	26 18 01	00 122 29 123	23 53 56	40 12	900		1869 1957 1961 1962 1950			53 47 12 12 23
F6 9685 F6 9686 F4 9694 F2 9866 F6 9940	WILLITS HOWARD RS WILLITS NW PAC RR WILLOW CREEK 1 NW YREKA ZENIA 1 SSE	1925 1365 461 2631 2880	SEC 05 SEC 18 SEC 29 SEC 27 SEC 22	T07N T45N	R13W R13W R05E R07W R06E	L	H 40 M 41	24 57 43	00 123 12 123 123 00 122 18 123	21 38 38	06	900 900		1935 1911 1968 1871 1950		05	23 23 53 47 53
F6 9953	ZENIA-KETTEMPOM STORE	3600	SEC 35	T03S	ROSE		н 40	10	123	27		900		1969			53

TABLE A-2 PRECIPITATION DATA NORTH COASTAL AREA

							Precipita	Ilan In Inchi	00								
Station Name	Total July I			19	69							1970					Total Oct.i
-3 -	To June 30	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	To Sept.30
NORTH COASTAL AREA																	
SMITH RIVER														1			
CRESCENT CITY 1 N CRESCENT CITY 7 ENE CRESCENT CITY H.M.S. CRESCENT CITY 11 E ELK VALLEY	66.23 87.90 63.38 109.89	.07 .05 .00 .04 T	.05 .04 .00 T	3.08 3.99 2.83 3.56	6.52 6.74 6.03 7-33	5.25 5.74 5.03 6.48	14.10 20.92 14.38 25.96	20.90 29.52 18.79 43.36	4.52 5.23 4.72 6.87	4.68 6.27 3.98 6.77	2.98 4.69 3.87 4.93	2.91 3.36 2.72 3.56 1.99	1.17 1.35 1.03 1.03	.02 .00 .00	.02 .00 .00 .00	.46 .51 .36 .36	63.53 84.33 60.91 106.65
FORT DICK GASQUET RANGER STATION IDLEWILD H.M.S. SMITH RIVER 2 WNW SMITH RIVER	77.26 93.46 82.80	.04 .00 .00	.05 .03 .00	4.45 3.25 1.86 4.75	7.33 6.60 6.16 7.86	5.39 5.25 3.60 5.67	17.01 21.61 20.96 RE	23.22 35.35 31.96	4.19 5.93 4.55	6.21 5.79 5.90	4.21 4.58 4.75	3.54 3.56 2.38 3.79	1.66 1.47 .68	.00 .00	.02 .00 .00	.62 .69 .17	73.40 90.83 81.11
LOST RIVER - BUTTE VALLEY																	
DORRIS IMSPECTION STA LAVA BEDS NAT'L MON MI HEBRON RANGER STA TULELAKE TULELAKE INSPECTION STA SHASTA - SCOTT VALLEYS	14.65 16.53 14.09 12.25	.23 .07 .33 .28 .11	.00	.26 .01 .17 .04 RE	1.99 1.42 1.58 1.99	.65 .61 .59 .53	4.11 3.68 3.48 3.60	4.02 2.97 3.87 2.45	.55 .74 .66 .40	1.11 2.55 1.27 1.57	.41 .69 .45 .39	.57 1.13 .24 .42	.75 2.66 1.45 .58	.21 .00 .01 .00	.00 .05 .00 .03	.04 .02 .00 .18	14.41 16.52 13.60 12.14
BIG SPRINGS & E CALLARAN RANGER STA ETNA FORT JONES 6 ESE FORT JONES RANGER STA	11.66 23.91 25.6 27.30	.17 .04 1.39 .2	.00	.20 .16 .22 .3	1.16 1.04 1.71 1.5 1.45	.87 .85 1.38 .7 .55	3.20 8.04 8.1 8.82	2.93 8.27 9.4 10.44	.33 1.86 2.34 2.2 2.28	1.28 .73 .91 1.0	.42 1.14 .9 .65	.30 .31 .7 .37	.80 1.47 .6	.00 .13 .00 .0	.00	.11 .08 .01 .1	11.40 23.92 25.2 27.03
GAZELLE EPPERSON GREENVIEW LITTLE SHASTA MONTAGUE MONTAGUE 3 E	15.22 21.46 17.12 14.56	1.37 .25 2.08 .27 .95	.00	.19 .33 .25 .10	.99 .32 1.66 1.24	.26 .08 .75 .26	4.10 7.06 4.03 5.06	5.73 10.60 4.95 4.86 4.99	.39 2.00 .54 .56 1.28	1.55 .25 1.65 1.39 .59	.26 .44 .49 .16	.17 .04 .50 .32	.21 .09 .22 .3 ¹ 4	.30 .00 .11 .20	.00	.04 .06 .00 .17	14.00 20.94 14.90 14.56
WEED FIRE DEPARTMENT YREKA	25.14 22.09	.16	.00	.25	1.14	2.12	9.29 7.87	8.04 8.01	1.98	.89 1.75	1.02	.03 .14	.49 1.10	.00 1.99	.00	.08	25.08 23.90
KLAMATH RIVER																	
CECILVILLE 5 SE CLEAR CREEK COPCO DAM NO. 1 FOOTHILL SCHOOL FORMS OF SALMON	44.21 67.77 22.80 19.50	.14 1.10 .64 .58	.00	.31 .61 .21	2.59 5.12 1.68 1.65	1.36 2.00 .88 .63	14.79 18.37 7.13 6.20	17.74 28.61 6.46 5.81	2.73 4.67 1.52 1.48	1.99 3.91 1.69 1.07	1.13 2.32 .43 .58	.71 .99 .41 .43	.72 .07 1.75	.00 .00 .01 .00	.00 .00 T	.08 .07 .02 .04	43.84 66.13 21.98 18.66
HAPPY CAMP RANGER STA HILTS KLAWATH OAK KNOLL RANGER STA ORLEANS	58.98 24.18 83.04 27.33 55.90	.82 .30 T .22	.00 .00 T	.46 .24 2.50 .01	4.67 1.41 7.70 1.98 4.31	1.77 .74 5.40 .80 1.93	17.38 7.08 15.90 8.13 14.63	23.95 9.07 30.20 10.77 22.48	4.51 1.08 4.60 1.90 4.22	3.15 2.24 6.34 2.11 3.11	1.06 .45 5.00 .68 1.97	.89 .09 4.60 .29 1.74	1.48 .80 .44	.00 .11 .00 .09	.00	.01 .08 .60 .04 .08	57.71 23.83 81.14 27.23 55.05
SAWYERS BAR RANGER STA SEIAD VALLEY RANGER STA SOMESBAR-UKONOM R S	46.42 47.55	.27 .18 .51	.00	.43 .26 .39	3.17 3.44 4.52	1.76 1.79 2.40	13.70 13.86 15.45	19.49 20.07 26.85	2.45 3.02 4.13	2.61 3.03 4.99	1.29 1.08 1.77	.79 .67 1.72	.46 .15	.00	.00	.11 .08 .10	45.83 47.19
BIG BAR RANGER STA BURNT RANCH 1 S BURNT RANCH H.M.S. COPPEE CREEK R S FOREST GLEN	45.28 47.89 43.70 77.96	.04 .07 .02 .0	.00	.31 .53 .46 .3	3.00 3.24 3.26 2.1 5.08	1.13 1.75 1.11 2.6 2.59	14.22 14.70 13.38 24.9 26.38	20.09 17.95 16.96	2.38 3.54 3.29 4.6 5.22	2.16 2.92 2.50 2.6 4.59	.67 1.42 1.44 .5	.87 1.11 .85 .2 1.00	.41 .66 .43 1.4	.00 .00 .00	.00 .00 .00 .0	.02 1 .00 .0	44.95 47.29 43.22 80.55
HAYFORK RANGER STA HOOPA HYAMPOM TRINITY DAM VISTA PT WEAVERVILLE RANGER STA	40.88 57.77 42.89 45.25	.10 .08 .00 T	.00	.07 .40 .12 .17	2.99 4.26 3.80 2.68 2.82	.80 2.07 1.11 1.79 1.18	14.70 15.65 16.26 13.83 15.74	15.46 24.07 21.17 17.12 17.55	2.68 4.04 3.95 1.98 3.15	2.24 3.50 2.05 3.50 2.38	.55 1.85 .55 .28 .46	.56 1.59 .49 .69	.73 .26 .26 1.05 1.09	.00	.00	.00 .03 .00 T	\$0.71 57.32 \$2.72 \$5.08
WILLOW CREEK	51.57	.09	.00	•39	4.56	1.63	13.42	20.03	4.08	3.64	2.13	1.34	.27	.00	.00	.05	51.15
ARCATA AIRPORT BIG LAGOON BLUE LAKE BUTLER VALLEY RANCH FIELDBROOK &D RANCH	49.60 60.93 40.02 77.30	.48 .40 .03	.04 .00 .03	.58 1.25 .50	4.49 4.13 3.73 6.60	3.72 5.04 2.46	10.95 12.57 9.89 18.30	16.05 22.58 11.08 26.10	3.00 3.83 3.85 6.15	4.57 5.11 3.53 3.50	2.63 3.03 1.93 6.15	2.66 2.55 2.37 RB 3.60	.43 .44 .62 .40	.01 .00 .00	.01	.12 .15 .41 .14	48.64 59.43 39.87 76.25
HONOR CAMP 42 KORBEL MAD RIVER RANGER STA ORICK 3 NIVE ORICK ARCATA RELWOOD	71.57 46.74 70.61 69.90 57.67	.08 .02 .00 .23	.09 .03 .00 .02	1.26 .36 .48 1.13	6.54 4.01 5.89 4.96 4.81	3.99 2.82 2.82 4.53 4.57	15.01 11.56 20.94 15.40 13.32	25.63 15.89 28.82 26.71 18.68	5.48 3.48 4.37 3.03 2.77	4.22 3.23 3.77 5.79 4.71	4.71 2.60 1.55 3.73 3.59	3.41 2.06 1.45 3.70 3.09	1.10 .68 .52 .67	.00	.00	.45 .37 .00 .35	70.59 46.70 70.13 63.87 56.44
ORICK PRAIRIE CREEK PK PATRICK POINT BTATE PK	66.10 60.82	. 4 3 •39	.05 .07	1.24 1.39	4.54 4.60	4.56 4.65	14.82 13.46	23.54 21.69	4.34 4.52	5.00 4.09	3.50 3.19	3.51 2.20	.57	.00 .00	.00	.23 .49	64.56 59.57

⁻ No record or record incomplete F Trace 3 Record ended 3 Record began

TABLE A-2 (Continued) PRECIPITATION DATA NORTH COASTAL AREA

							Precipita	tian In Inch	14								
Station Name	Tatol July I			19	69							1970					Total Oct.i
	To June 30	July	Aug.	Sept.	Oct.	Nav.	Dec.	Jan.	Feb.	Mor.	Apr.	Моу	June	July	Aug.	Sept.	Ta Sept.3
NORTH COASTAL AREA									_								
EEL RIVER ADANAC LODGE ALDERPOINT BRANSCOMB 2 NW BRIDGEVILLE 4 NNW BULL CREEK	81.55 , 57.08 87.27 67.30 71.89	.00 T T	.00	.40 •38 •49 1.27	4.99 3.57 5.16 5.20 3.59	3.85 2.23 4.23 3.43 3.97	23.43 17.98 23.60 17.59 20.34	34·39 23·23 38·90 23·32 29·51	7.30 4.34 6.85 4.58 6.65	3.98 3.41 5.03 4.66 3.96	1.76 .99 1.64 4.00 2.32	1.15 .95 .96 2.59	.30 .00 .41 .66	.00 .00 .00	.00	.00 .00 .00	81.15 56.70 86.78 66.03
BURLINGTON STATE PARK COVELO COVELO EEL RIVER R S CUMMINGS EUREKA W B CITY	72.62 42.61 81.97 38.22	.00 .00 .00	.00 .00 .00	.11 .16 .34 .36	4.08 2.80 2.40 4.05 3.20	3.36 1.39 1.55 3.68 3.49	22.65 14.71 12.52 22.12 9.60	29.67 18.48 36.44 12.46	6.24 3.10 3.76 5.80 3.15	3.27 2.61 1.92 5.05 2.70	2.00 .44 .86 2.82 1.54	1.10 .25 .66 1.30 1.38	.14 .22 .30 .37 .29	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	72.51 42.4 81.6 38.1
FERNDALE 2 NW FORTUNA FOX CAMP GARBERVILLE GARBERVILLE H.M.S.	37.76 38.42 64.30 62.94	.16 .00 .00 .04	.01 T .00	.38 .36 1.94 .28	1.85 2.19 4.85 4.15 4.52	3.96 2.43 5.41 3.50 2.68	9.72 11.36 28.78 20.20 19.06	12.40 12.74 40.09 23.77 22.05	3.77 3.06 7.27 5.37 5.32	2.88 3.16 4.82 4.54 5.89	1.62 1.75 2.26 1.90 1.72	.80 1.18 1.80 .32 .83	.21 .19 .29 .27 .46	.00 .00	.15 .00 .00 .00	.12 .02 .00 T	37.56 38.06 95.51 64.06 62.53
GRIZZLY CRK REDWOOD S F HARRIS 7 SSE HIGH ROCK KNEELAND 10 SSE LAKE MOUNTAIN	53.31 62.78 67.99 53.29	.03 T T .00	.00 .00 .00	.80 .24 .37 1.31 .27	3.08 2.59 3.05 3.54 3.45	2.86 2.51 3.63 2.27 RE	15.36 21.09 20.31 14.22	18.04 24.59 27.54 17.70	4.78 5.97 6.59 4.31	3.38 2.99 3.17 3.18	3.23 1.69 2.02 3.85	1.37 .91 1.15 2.40	.38 .20 .16 .51	.00	.00 .00 T	.12 .00 .00 .03	52.66 62.51 67.66 52.01
LAKE PILLSBURY NO. 2 LAYTONVILLE MINA 3 NW MIRANDA 4 SE MIRANDA SPENGLER RCH	67.75 62.92 57.8	.00 .00 .00	.00 .00 .00	.00 .17 .32 .6 .48	3.81 4.55 2.28 3.9 3.84	1.99 2.36 5.35 2.8 2.33	15.15 19.14 18.58 19.5	27.10 31.72 24.62 22.4 21.26	3.76 4.64 4.18 2.9 5.44	2.09 3.40 3.61 2.7 2.55	.72 .96 2.26 1.8 1.46	RE .56 1.72 1.0	.25 .00 .2 .21	.00	.00 .00 .0	.00 .00 .0	67.55 62.60 57.2
MYERS FLAT OLD HARRIS RICHARDSON GROVE S P SCOTIA SHERWOOD VALLEY	70.46 73.84 77.42 47.62	.01 .00 .01	.00 .00 .00	.45 .48 .37 .70	4.35 4.79 4.64 1.40 4.29	3.46 3.38 3.41 3.40 2.46	21.84 20.17 24.57 14.45 21.79	27.69 30.93 31.29 17.32 34.23	6.27 6.13 5.83 4.65 5.72	3.08 4.05 3.62 3.24 4.78	2.04 2.15 2.60 1.33 .97	1.12 1.25 .84 1.03	.15 .41 .25 .09 .68	.00	.00 .00 .00 T	.00 .00 T .10	70.00 73.26 77.05 47.01
STANDISH HICKEY ST PK SUNNY BRAE WEOTT 2 SE WILLITS 1 NE WILLITS HOWARD FOR R S	77.48 42.15 68.02 56.55 55.85	.00 .26 .00 .00	.00 .03 .00 .00	.45 .56 .37 .09	4.96 3.86 4.02 3.39 2.69	3.75 2.93 3.35 1.82 1.87	20.53 10.17 23.92 15.05 14.91	33.47 12.83 28.56 26.05 26.55	6.29 2.86 2.48 5.50 4.81	5.26 3.82 1.52 2.65 2.49	1.93 2.22 2.33 1.20 1.36	.77 2.23 1.47 .43	.07 .38 .00 .37 .62	.00 .00 .00	.00 T .00 .00	.00 .52 .00 .00	77.0; 41.8; 67.6; 56.4; 55.6;
WILLITS N W P R R ZENIA 1 SSE ZENIA-KETTENPOM STORE MATTOLE RIVER	72.73	.00	.00	.06 .75	3.20 4.62	1.78 3.20 RB	16.28 20.12 19.27	26.76 27.56 29.84	6.07 5.88 5.30	2.60 5.47 4.20	2.41 2.17	27 2.11 1.96	.61 .49	.00	.00	.06 .00	72.0
FERNDALE 8 SSW HONEZDEW 2 WSW HONEZDEW HUNTER PETROLIA PETROLIA 4 NW	39.89 114.18 118.45 64.98 47.68	.41 .00 .00 .00	.33 T .00 .00	.61 .62 .64 .58 .83	2.01 4.31 4.00 2.53 2.43	3.51 8.35 8.19 5.40 4.50	10.32 36.74 37.62 20.81 12.72	10.82 45.26 46.94 22.38 14.45	2.49 10.40 14.16 5.97 4.03	4.20 5.63 4.12 3.99 4.05	2.70 1.84 1.84 1.78 2.72	1.58 .77 .81 1.19 1.50	.91 .26 .13 .35	.00	.00	.07 .07 .08	113.63 117.88 64.48
SHELTER COVE UPPER MATTOLE WHITETHORN	52.30 80.51 86.89	.02 .00 .05	.00 .00	1.80 .67 .92	4.63 4.23 6.03	4.97 6.91 5.96	15.12 24.21 25.99	14.74 29.44 31.86	5.03 8.16 7.85	2.76 3.99 4.73	1.36 2.01 1.92	1.24 .75 1.01	.63 .14 .57	.00 .00	.00	.02 .10 .00	50.50 79.94 85.92
																	ŀ
				1								-					
- No record or record in																	

⁻ No record or record incomplete T Trace RE Record ended RB Record began

TABLE A-3

STORAGE GAGE PRECIPITATION DATA NORTH COASTAL AREA

		1969-70 Season								
Station	Measuring Agency	Measu: Per:	rement	Precipitation in Inches						
50001011	Agency	rer.	100	In Inches						
NORTH COASTAL AREA										
SMITH RIVER										
Camp Six Lookout	DWR	7-08-69	6-23-70	107.92						
LOST RIVER-BUTTE VALLEY										
Bray 10 WSW Crowder Flat Long Bell Station	DWR DWR DWR	7-08-69 8-15-69 7-11-69	6-24-70	24.15 19.62 34.36						
Medicine Lake	DWR	7-10-69		51.49						
SHASTA-SCOTT VALLEYS										
Gazelle Lookout	DWR	7-09-69	6-24-70	18.11						
KLAMATH RIVER										
Beswick 7S Blue Creek Mountain	DWR DWR	7-08-69 7-07-69	6 - 23 - 70	42.58 119.44						
TRINITY RIVER	Ditt		0 22 0	aliate y o T T						
Board Camp Mountain	DWR	7-07-69		99.20						
Mumbo Basin	DWR	7-10-69	6-24-70	65.37						
EEL RIVER										
Plaskett	DWR	7-24-69	7-07-70	67.25						

DWR - Department of Water Resources

TABLE A-4 EVAPORATION DATA

The definition of terms and the abbreviations used in Table A-4 are as follows:

Evap - The total amount of water evaporated from the pan in inches for the month.

Wind - The amount of movement of air over the pan in miles for the month.

Avg Max - The arithmetic average of daily maximum water temperatures in degrees Fahrenheit for the month.

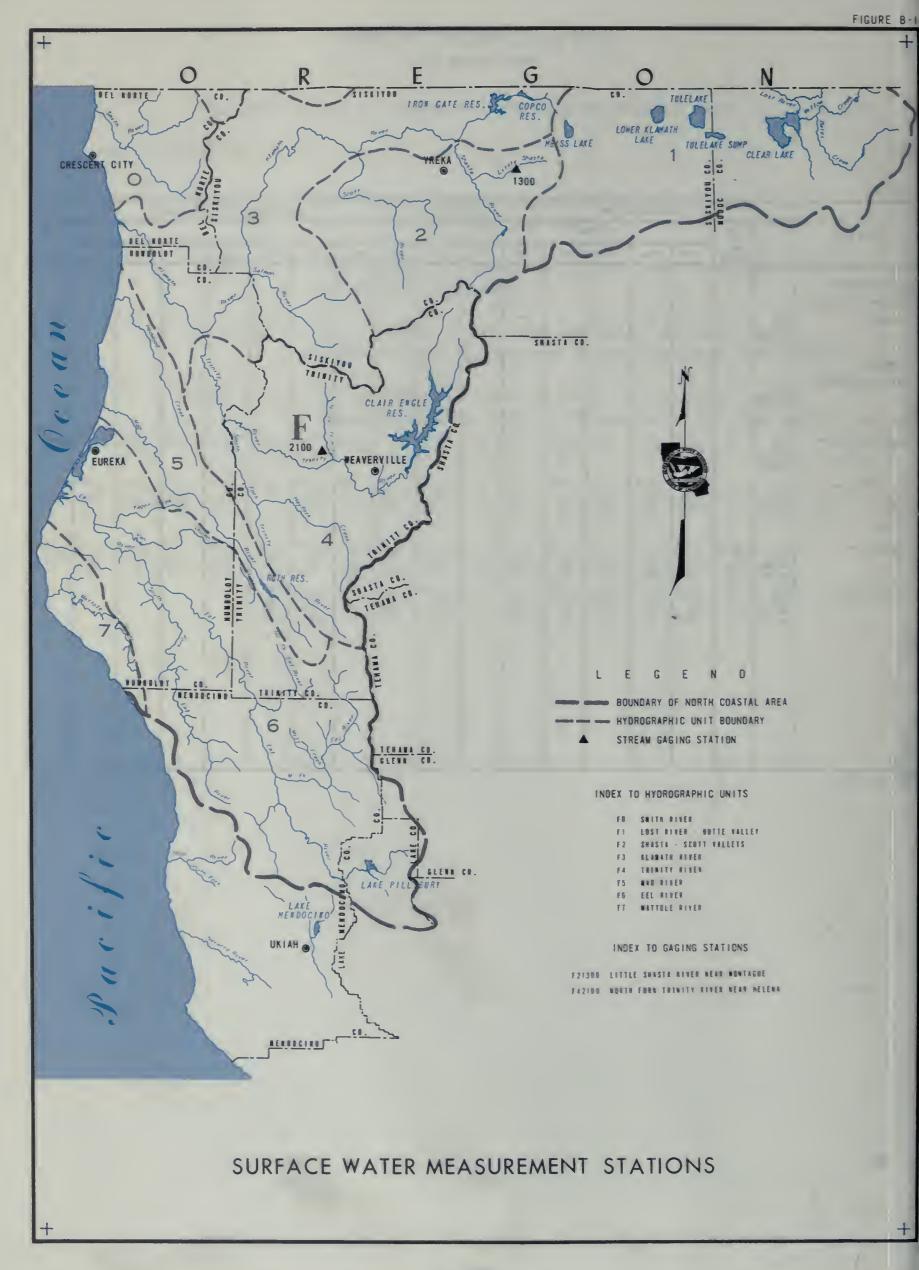

Avg Min - The arithmetic average of daily minimum water temperatures in degrees Fahrenheit for the month.

TABLE A-4 EVAPORATION DATA

NORTH COASTAL AREA

			Ev	aparation is	n Inches			Wind Ir	Tatal Miles			Wa	ter Tempera	ture in Degr	ees Fahrenhe	ii		
Station Name		Total July I			19	69							1970					Tatal Oct.1
		To June 30	July	Aug.	Sept.	Oct.	Nav.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	To Sept. 3
NORTH COASTAL AREA																		
LOST RIVER-BUTTE VALLEY																		
TULEIAKE	Evap Wind Avg Max Avg Min		9.57	9.61	8.41						***	•••	8.28	7.58	9.88	9.12	6.53	
KLAMATH RIVER																		
SEIAD VALLEY RANGER S	Evap Wind Avg Max Avg Min	***	8.48	8.13	5.08	***									9.64	8.50	4.86	
TRINITY RIVER																		İ
TRINITY DAM VISTA PT	Evap Wind Avg Max Avg Min		10.21 1287	9.79 1258	5.81 1039	2.58 1161	776·53	849			2.92 1725	4.35 1443	7.61 1089	8.35	11.42	10.49 1185	1177	
WILLOW CREEK 1 NW	Evap Wind Avg Max Avg Min		8.47 508 93.2 61.1	7.04 527 89.2 50.7	4.87 333 85.7 54.7	2.80 188 71.6 45.4	.72 148 57.3 41.9	180	203	.84 56.8 43.8	1.95 65.5 44.8	2.40 206 66.1 43.5	4.73 203	6.90 311 88.9 58.8	9.61 440 95.3 61.7	7.38 488 90.0 57.6	4.55 346 81.0 51.9	
KEL RIVER																		
FERNIALE 2 NV	Evap Wind Avg Max Avg Min	33.85 10886 68.8 49.2	4.66 870 78.8 56.6	4.60 735 79.9 56.2	3.60 755 76.2 54.3	2.32 832 67.8 49.0	1.03 619 59.2 43.6	.59 1007 55.1 44.5	.51 1486 55.2 45.6	1.50 761 61.1 44.2	2.53 9% 66.4 44.8	3.46 1042 70.0 45.6	4.62 953 76.9 51.2	4.43 830 78.5 54.8	4.74 681 79.2 56.0	3.57 660 76.2 54.5	4.17 652 76.8 52.1	33.4 10519 68.5 48.8
LAKE PILLSBURY NO. 2	Evap Wind Avg Max Avg Min		10.83 532 93.3 60.4	10.18 503 90.7 57.6	6.91 453 84.0 55.8	3.16 342 67.9 44.9	1.20 156 56.2 40.1	.56 171 50.3 41.2	.70 272 51.3 41.4	1.69 259 58.6 39.5	2.92 1725 	5.33 943 68.8 42.3	RE RE RE			H		

RE - Record Ended

APPENDIX B

SURFACE WATER MEASUREMENTS

This appendix presents surface water data for the 1970 water year, the period from October 1, 1969, to September 30, 1970. The data consist of daily mean discharges and station locations at two gages, and summary tables of monthly and annual unimpaired runoff from major streams.

In addition to data collected and published by the Department of Water Resources in this appendix, the U. S. Geological Survey collects and publishes data from many additional gaging stations for the same report area. This work is done under a federal-state cooperative contract, or through cooperative arrangements with other local or government agencies. The data published in the following reports together with this report present a comprehensive analysis of the water resources for the area:

- 1. "Water Resources Data for California
 Part 1. Surface Water Records
 Volume 1: Colorado River Basin, Southern Great Basin,
 and Pacific Slope Basins excluding Central Valley"
 United States Department of the Interior
 Geological Survey
 Prepared in cooperation with the California Department of Water Resources and with other agencies.
- 2. Bulletin 120, "Water Conditions in California", Fall Issue Department of Water Resources

Each of the two stations in this appendix has been assigned an identification number. The letter and first digit denote the drainage basin as shown below. The remaining digits further identify each of the stations.

North Coastal Area

FO	-	Smith River	F4	-	Trinity River
Fl	-	Lost River-Butte Valley	F5	-	Mad River
F2	-	Shasta-Scott Valleys	F 6	-	Eel River
F3	_	Klamath River	F7	-	Mattole River

TABLE B-1 ANNUAL UNIMPAIRED RUNOFF

Unimpaired runoff is defined as the flow that would occur naturally at a point in a stream if there were: (1) no upstream controls such as dams or reservoirs; (2) no artifical diversions or accretions; and (3) no change in ground water storage resulting from development.

TABLE B-1

ANNUAL UNIMPAIRED RUNOFF

In Percent of Average

	Klamath River,	Salmon River	Trinity River	Eel River
	Copco To	at	at	at
Water Year	Orleans	Somesbar	Lewiston	Scotia
Average Annual Runoff*	4419	1226	1227	5383
1920-21 1921-22 1922-23 1923-24 1924-25 1925-26 1925-26 1926-27 1927-28 1928-29 1929-30	86 57	89 48 63	146 64 56 22 122 66 149 86 43	145 69 51 16 133 61 146 86 35 65
1930-31 1931-32 1932-33 1933-34 1934-35 1935-36 1936-37 1937-38 1938-39 1939-40	40 76 81 49 82 90 74 179 58	39 85 83 47 93 93 80 182 62 104	33 59 65 56 79 83 81 172 47	30 67 68 46 94 107 66 200 50 135
1940-41 1941-42 1942-43 1943-44 1944-45 1945-46 1946-47 1947-48 1948-49	101 105 134 62 82 116 59 97 72	103 108 142 52 92 124 63 101 78	208 147 90 53 85 115 60 98 89	153 138 106 42 89 112 49 88 77
1950-51 1951-52 1952-53 1953-54 1954-55 1955-56 1956-57 1957-58 1958-59	143 150 146 139 60 187 98 185 77	147 159 147 131 48 179 97 184 82	131 148 131 129 60 165 88 219 85	133 149 133 129 60 190 81 217 77 87
1960-61 1961-62 1962-63 1963-64 1964-65 1965-66 1966-67 1967-68 1968-69 ** 1969-70 **	102 74 133 90 162 107 117 76 129 135	98 78 140 92 152 90 103 77 137	99 85 130 65 140 110 135 82 142 130	100 73 131 64 175 96 123 79 162 141

^{*} Average Unimpaired Runoff in Thousands of Acre-Feet Adjusted To the 50-Year Period October 1920 Through September 1970.

^{**} Preliminary Data Subject to Revision.

TABLE B-2
MONTHLY UNIMPAIRED RUNOFF

In Percent of Average

Month		Klamath River, Copco to Orleans	Salmon River at Somesbar	Trinity River at Lewiston	Eel River at Scotia
October	Percent	33	85	79	44
1969	Average	85	21	21	55
November	Percent	33	39	42	16
1969	Average	214	55	51	284
December	Percent	1 54	171	230	168
1969	Average	4 85	129	99	943
January	Percent	391	444	501	352
1970	Average	644	166	110	1 225
February	Percent	125	1 06	109	73
1970	Average	608	158	149	1177
March	Percent	113	1 08	109	67
1970	Average	587	1 5 8	157	795
April	Percent	47	44	51	26
1970	Average	627	1 79	217	550
May	Percent	67	40	83	31
1970	Average	586	190	241	237
J un e	Percent	90	72	80	31
1 9 7 0	Average	3 36	108	123	79
July	Percent	70	78	7 4	62
1970	Average	125	35	36.	22
August	Percent	74	95	4 1	59
1970	Average	66	15	1 3	10
September	Percent	92	89	3 D	50
1970	Average	55	1 0	9	7
1969-70		1 35	1 32	130	141
Water Year		596 8	1 620	1594	7614

Note: The Percent Values are Preliminary Data Subject to Revision
Average Unimpared Runoff in Thousands of Acre Feet Adjusted To the 50-Year
Period October 1920 Through September 1970.

TABLE B-3 DAILY MEAN DISCHARGE

The streamflow table is arranged in downstream order for each stream or stream system. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named after the stream and the nearest post office (e.g., Little Shasta River near Montague).

The discharges estimated for periods of no record or invalid record are shown with the letter "E". Also qualified by the letter "E" are discharges obtained from extended ratings which exceed 140 percent of the highest measured flow-rate on which the rating curve was based.

The discharge figures in this table have been rounded off as follows:

1. Daily flows - cubic feet per second

```
0.0 - 9.9 nearest Tenth
10 - 999 " Unit
1,000 - 9,999 " Ten
10,000 - 99,999 " Hundred
100,000 - 999,999 " Thousand
```

2. Monthly means - cubic feet per second

```
0.0 - 99.9 nearest Tenth

100 - 9,999 " Unit

10,000 - 99,999 " Ten

100,000 - 999,999 " Hundred
```

3. Yearly totals - acre-feet

```
0.0 - 9,999 nearest Unit

10,000 - 99,999 " Ten

100,000 - 999,999 " Hundred

1,000,000 - 9,999,999 " Thousand
```

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1970	F21300	LITTLE SHASTA RIVER NEAR MONTAGUE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	4.7 5.6 5.0 4.7 4.7	3.5 3.2 3.2 5.3	3.8 E 3.8 E 3.8 E 3.8 E 3.8 E	18 17 16 15 14	38 33 37 35 33	22 21 21 20 19	20 21 20 21 22	25 28 31 33 33	28 27 26 25 23	10 9.4 9.0 8.8 8.7	6.4 6.4 6.2 6.2 6.1	5.0 5.1 5.0 5.2 5.3	1 2 3 4 5
6 7 8 9 10	4.7 4.4 6.6 6.0 6.0	7·3 5·3 4·7 4.4 4.4	3.8 E 3.8 E 3.8 E 5.0 E 9.5 E	14 14 15 14 4.7	32 32 33 32 * 31	26 62 63 44 36	2 ¹ 4 22 21 23 31	31 32 41 41 40	24 22 23 24 25	8.6 8.2 7.9 7.8 7.6	6.0 6.0 5.9 5.8 5.8	5.5 5.3 5.1 * 5.0 5.0	6 7 8 9 10
11 12 13 14 15	5.3 4.8 4.4 4.7 6.6	4.4 3.8 3.8 3.2 3.8	19 E 30 E 23 E 14 E 9.5 E	7-3 12 26 88 53	30 35 32 29 27	35 35 37 45 40	27 24 25 25 24	38 40 41 40 * 40	20 19 23 20 17	7.7 7.7 7.5 7.4 7.2	5.7 5.6 5.5 5.5 5.3	4.9 4.8 4.8 4.8 4.8	11 12 13 14 15
16 17 18 19 20	8.1 6.0 5.3 5.3	3.8 2.5 3.2 3.1 2.5	6.0 E 6.6 * 6.2 31 47	75 82 58 46 40 *	26 27 25 22 21	36 33 * 29 27 26	24 22 22 27 24	40 41 42 42 41	16 15 * 14 14 13	7.1 7.0 7.2 7.2 7.0	5.3 5.2 5.2 5.2 5.2	4.8 4.7 4.7 4.7 4.6	16 17 18 19 20
21 22 23 24 25	5.0 4.7 4.4 * 4.4	2.5 2.5 3.2 3.2 3.2	178 70 48 42 40	73 218 269 160 88	21 20 19 19	25 25 25 25 25 25	23 22 23 23 22	40 39 38 37 36	13 1 ¹ 4 12 12 11	7.0 * 7.0 6.8 6.6 6.5	5.1 5.1 5.1 5.1 5.0	4.5 4.5 4.5 4.4	21 22 23 24 25
26 27 28 29 30 31	4.4 4.4 4.4 4.4 3.8	3.2 3.8 3.8 3.8 3.8	*34 28 26 24 23 22	99 116 65 51 47 40	17 17 21	25 23 23 23 21 20 *	23 23 23 21 23	36 35 34 33 31 30	11 11 14 12 11	6.5 6.6 6.7 6.4 6.4	5.0 5.0 5.0 5.0 5.0	4.4 4.3 4.2 4.2 4.2	26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.	5.3 11 3.8 323	4.1 14 2.5 243	24.9 178 3.8 1530	59.8 269 4.7 3680	27.2 38 17 1510	30.2 63 19 1860	23.2 31 20 1380	36.4 42 25 2240	18.0 28 11 1070	7.5 10 6.4 460	5.5 6.4 5.0 337	4.8 5.5 4.2 283	MEAN MAX. MIN. AC.FT.

- ESTIMATED
- NO RECORD
- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

				WATER	YEAR SUMMA	RY
MEAN		MAXIMI	JM			М
DISCHARGE 20.7	DISCHARGE 575	GAGE HT. 4.66	MO.	1600	DISCHARGE 2.5	G
				レン		

MINIMUM											
DISCHARGE	GAGE HT.	MO.	DAY	TIME							
2.5	1.33	11	17	0000							

14970

LOCATION			MAXIMUM DISCHARGE			PERIOD O	F RECORD	DATUM OF GAGE			Ε
LATITUDE LONGITUDE	1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LATITUDE	DE LONGITUDE	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM			
41 45 11	122 17 58	NW15 45N 4W	5910 E	10.66	12/22/64	28-NOV 51 8 APR 52-APR 55 SEP 56-DATE	28-NOV 51 8 APR 52-APR 55 SEP 56-DATE	1956 1965	1964	0.00	LOCAL

Station located S of Ball Mountain Road, 12 mi. NE of Montague, 16 mi. SW of Macdoel. Stage-discharge relationship affected by ice at times. Drainage area is 48.2 sq. mi.

ö - Irrigation season only.

TABLE 8-3 (CONT)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1970 F42100 NORTH FORK TRINITY RIVER NEAR HELENA

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5	30 30 30 30 30	41 40 39 59 400	22 21 20 19 18	367 326 292 259 227	965 847 780 732 680	548 502 471 455 428	326 324 307 300 303	166 233 325 377 374	348 392 385 356 352	94 98 108 117 122	37 36 35 35 35 34	22 22 22 * 22 * 22 24	1 2 3 4 5
6 7 8 9	31 31 44 50 52	182 119 104 89 77	17 16 25 20 23	201 182 184 316 710 *	639 606 586 577 568	416 624 762 685 622	309 292 274 263 309	329 287 325 369 306	349 321 295 248 216	121 103 * 91 76 70	34 34 33 32 31	24 23 22 22 21	6 7 8 9
11 12 13 14 15	45 40 38 37 66	80 87 82 73 67	156 1320 1160 1520 834	690 748 1550 3070 2170	562 * 600 602 566 538	593 569 566 654 637	302 271 260 245 231 *	261 231 216 225 295	180 148 142 153 140	67 65 62 58 59	30 29 29 29 29	21 20 20 20 21	11 12 13 14 15
16 17 18 19 20	226 174 86 67 64	65 58 55 52 49 *	555 * 501 521 1400 * 2460	3220 4270 2990 2910 3150	608 686 650 611 579	604 580 540 * 504 478	221 209 207 220 198	444 501 452 393 * 337	150 * 164 179 232 273	63 61 55 50 50	28 27 27 27 27 27	21 21 21 21 21 22	16 17 18 19 20
21 22 23 24 25	99 82 67 59 52	45 42 39 36 34	7770 2150 1780 * 1370 1120	6780 8580 * 10200 8230 4210 *	555 529 506 488 471	455 448 451 449 446	192 184 * 174 168 161	320 353 380 336 381	266 275 260 240 204	50 49 46 44 43	26 26 26 25 25	22 21 21 21 21 20	21 22 23 24 25
26 27 28 29 30 31	48 46 * 45 43 43	31 29 27 25 24	1010 793 632 533 463 409	4290 6340 2800 1860 1410 1140	465 467 518	427 413 400 385 367 * 345	172 153 146 141 146	426 383 317 300 294 303	204 185 164 132 102	43 43 43 43 41 *	25 * 25 24 23 23 23	20 20 20 20 * 19	26 27 28 29 30 31
MEAN MAX. MIN. AC. FT.	58.9 226 30 3620	71.7 400 24 4260	924 7770 16 56840	2699 10200 182 166000	606 965 465 33680	510 762 345 31390	23 ¹ 4 326 1 ¹ 41 13900	330 501 166 20310	235 392 102 13990	66.9 122 39 4110	28.8 37 22 1770	21.2 24 19 1260	MEAN MAX. MIN. AC.FT.

WATER YEAR SUMMARY

- ESTIMATED
- NO RECORD
- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

E AND *

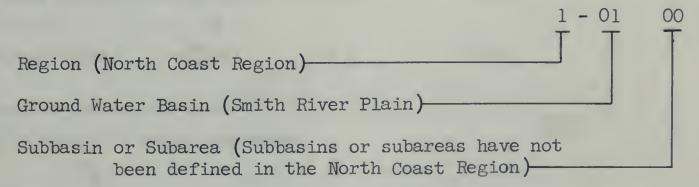
MEAN		MAXIMU	I M			MINIM	UM	
DISCHARGE 485	DISCHARGE 12800	19.40	MO. 12	11ME 0645	DISCHARGE 15	6.52	MO. 12	1715

TOTAL ACRE PEET 351100

	LOCATION			XIMUM DISCH	ARGE	PERIOD C	F RECORD		DATUM OF GAGE		
LATITUDE LONGITUDE	1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LATITUDE	LUNGITUDE	M.D.B.&M.	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
40 46 55	123 07 40	SW21 34N 11W	35800	27.93	12/22/64	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located 1.0 mi. above mouth, 0.6 mi. N of Helena. Stage-discharge relationship affected by ice at times. Drainage area is 151 sq. mi.

APPENDIX C

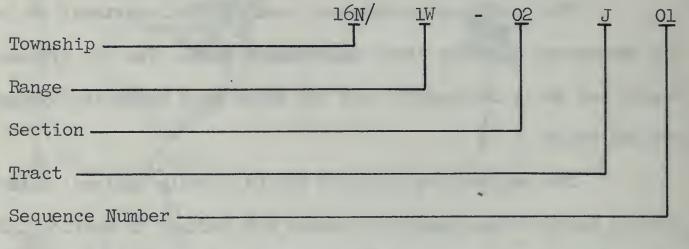

GROUND WATER MEASUREMENTS

This appendix contains ground water level measurements from 46 wells for the period October 1, 1969, through September 30, 1970. It also contains a table which summarizes the measurements. Wells in the network are continuously reviewed and, when conditions dictate, replacement wells are located and measured.

There are nine ground water basins in the North Coastal Region for which data are reported.

Two numbering systems are used by the Department to facilitate the processing of water level measurement data. The two systems are the Region and Basin Designation and the State Well Numbering System as described below.

The regions are those of the California Regional Water Quality Control Boards whose geographic areas are defined in Section 13200 of the Water Code. That portion of Northern California covered by this report is included in the North Coast Region. A decimal system of the form 0-00.00 has been selected according to geographic regions, ground water basins, and subbasins or subareas as follows:


The State Well Numbering System is based on township, range, and section subdivisions of the Public Land Survey.

A section is divided into 40-acre tracts as follows:

D	С	В	A
E	F	G	Н
М	L	K	J
N	P	Q	R

Sequence numbers in a tract are generally assigned in chronological order.

The number of a well, assigned in accordance with this system, is referred to as the State Well Number, as illustrated below:

Base and Meridian -

This number identifies and locates the well. In the example, the well is in Township 16 North, Range 1 West, Tract J of Section 2, located in the Humboldt Base and Meridian.

TABLE C-1

AVERAGE CHANGE OF GROUND WATER LEVELS

AND SUMMARY OF WELL MEASUREMENTS REPORTED

NORTH COASTAL AREA

Ground Water Bas	sin	Average Change Spring 1969	Measuring	•	er of Reported
Name	Number	to Spring 1970 in feet	Agency	Fall 1969	Spring 1970
NORTH COASTAL REGION					
Smith River Plain	1-01.00	-1.2	DWR	6	. 6
Butte Valley	1-03.00	0.0	DWR	7	7
Shasta Valley	1-04.00	-0.1	DWR	6	6
Scott River Valley	1-05.00	+0.2	DWR	5	5
Mad River Valley	1-08.00	- 3.8	DWR	2	2
Eel River Valley	1-10.00	-0.2	DWR	4	4
Round Valley	1-11.00	-0.7	DWR	6	5
Laytonville Valley	1-12.00	- 3.9	DWR	4	4
Little Lake Valley	1-13.00	- 2.1	DWR	6	5

DWR - Department of Water Resources

TABLE C-2 GROUND WATER LEVELS AT WELLS

An explanation of the column headings and the code symbols

follows:

page 21. State Well Number - Refer to the explanation presented on

Ground Surface Elevation - The numbers in this column are the elevation in feet above mean sea level (USGS datum) of the ground surface at the well. Elevations are usually taken from topographic maps and the accuracy is controlled by topographic standards.

<u>Date</u> - The date shown in the column is the date when the depth measurement given in the next column was made.

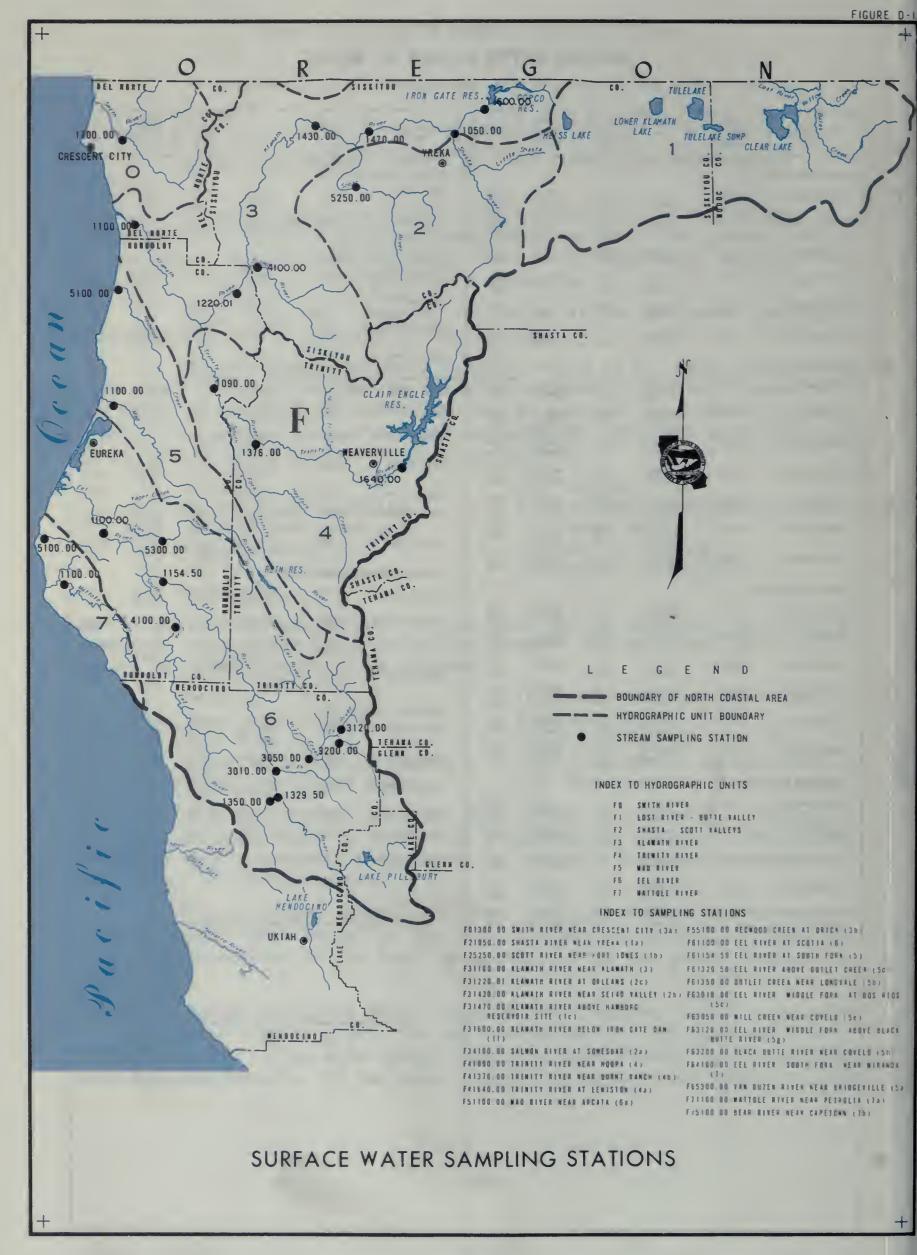
Ground Surface to Water Surface - This is the measured depth in feet from the ground surface to the water surface in the well; some of the depth measurements in the column may be preceded by a number in parentheses to indicate a questionable measurement. The code applicable to these "questionable measurements" is as follows:

- (1) Pumping
- (2) Nearby pump operating
- (3) Casing leaking or wet
- (4) Pumped recently
- (5) Air or pressure gage measurement
- (6) Other
- (7) Recharge operation at or near well
- (8) Oil in casing
- (9) Caved or deepened

When a measurement was attempted, but could not be obtained, then only a number in parentheses is shown in the column. The code applicable to these "no measurements" is as follows:

- (1) Pumping
- (2) Pump house locked
- (3) Tape hung up
- (4) Cannot get tape in casing
- (5) Unable to locate well
- (6) Well has been destroyed
- (7) Special
- (8) Casing leaking or wet
- (9) Temporarily inaccessible
- (0) Measurements discontinued

The words FLOW and DRY are shown in this column to indicate a flowing or dry well, respectively. A minus sign preceding the number in this column indicates that the static water level in the well is this distance in feet above the ground surface.

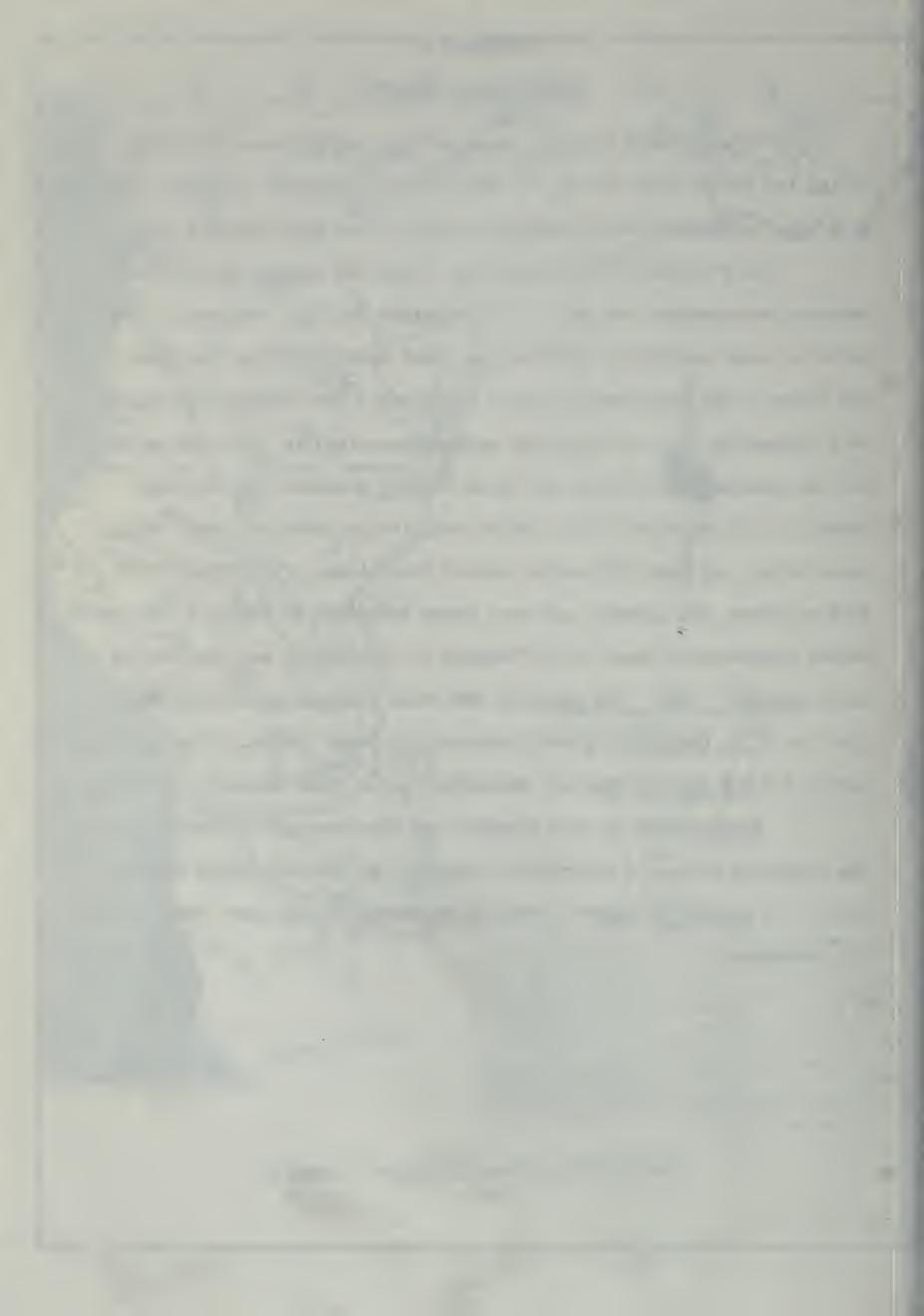

Water Surface Elevation - This is the elevation in feet above mean sea level (USGS datum) of the water surface in the well. It was derived by subtraction of the depth measurement from the ground surface elevation.

Agency Supplying Data - Each of these numbers is the code number for the agency supplying data for that measurement. The Department of Water Resources is the sole agency supplying ground water level measurement data for this report. It has been assigned an agency code number of 5050.

GROUND WATER LEVELS AT WELLS

			GROUNO SUR-		
STATE WELL NUMBER	GROUNO SURFACE ELEVATION IN FEET	DATE	FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SMITH RIVER PLAIN	N 1-01.00				
16n/01w-02J01 H	127.0	10-14-69 4-08 - 70	21.1	105.9 108.5	5050 5050
16N/01W-17K01 H	48.0	10-14-69 4-08-70	22.3 13.8	25.7 34.2	5050 5050
17N/01W-02P01 H	31.0	10-14-69 4-08-70	20.5 18.7	10.5	5050 5050
17N/01W-03E01 H	14.0	10-14-69 4-08-70	13.0 (1) 12.7	1.0	5050 5050
17N/01W-15M02 H	21.0	10-14-69 4-08-70	16.0 9.9	5.0 11.1	5050 5050
18n/01w-26P01 H	38.0	10-14-69 4-08-70	25.7 14.0	12.3 24.0	5050 5050
BUTTE VALLEY 1-0	3.00				
46n/ole-06nol m	4242.0	10-08-69 4-06-70	28.0 20.0	4214.0 4222.0	5050 5050
46n/02w-25R02 M	4256.0	10-08-69 4-06-70	32.9 23.5	4223.1 4232.5	5050 5050
47N/01W-14B01 M	4234.0	10-08-69 4 - 06-70	10.4 8.2	4223.6 4225.8	5050 5050
47N/O1W-17RO1 M	4240.0	10-08-69 4-06-70	9.5 8.3	4230.5 4231.7	5050 5050
47N/01W-19I01 M	14238.0	10-08-69 4-06-70	5.3 3.5	4232.7 4234.5	5050 5050
47N/01W-27B01 M	4233.0	10-08-69 4-06-70	9.7 6.5	4223.3 4226.5	5050 5050
48n/01w-26n01 M	4244.0	10-08-69 4-06-70	20.2 12.8	4223.8 4231.2	5050 5050
SHASTA VALLEY 1-	04.00				
42N/05W-20J01 M	2882.0	10-07-69 4-06-70	3.6 5.1	2878.4 2876.9	5050 5050
42N/06W-10J01 M	2835.0	10-07-69 4-06-70	13.5 5.5	2821.5 2829.5	5050 5050
43N/06W-22A01 M	2665.0	10-07-69 4-06-70	9.0 (1)	2656.0	5050 5050
44N/05W-34H01 M	2637.0	10-07-69 4-06-70	25.0 28.8	2612.0 2608.2	5050 5050
44N/06W-10F01 M	2537.0	10-07-69 4-06-70	14.8 25.0	2522.2 2512.0	5050 50 5 0
45N/06W-19E01 M	2538.0	10 -0 7-69 4-06-70	20.9 18.2	2517.1 2519.8	5050 5050
SCOTT RIVER VALL	EY 1-05.00				
42N/09W-02A02 M	2746.0	10-07-69 4-06-70	12.0 8.0	2734.0 2738.0	5050 5050
42N/09W-27NO1 M	2930.0	10-07-69 4-06-70	8.4 2.1	2921.6 2927.9	5050 5050
43N/09W-23F01 M	2728.0	10-07-69 4-06-70	6.0 3.2	2722.0 2724.8	5050 5050
43N/09W-24F01 M	2735.0	10-07-69 4-06-70	8.2 3.0	2726.8 2732.0	5050 5050
44N/09W-28P01 M	2711.0	10-07-69 4-06-70	21.8 9.3	2689.2 2701.7	5050 5050

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING OATA
MAD RIVER VALLEY	1-08.00				
06n/01e-06H01 H	151.0	10-15-69 4-07-70	13.0	138.0 146.5	5050 5050
06N/01E-29P01 H	25.0	10-15-69 4-07-70	9.3 12.0	15.7 13.0	5050 5050
EEL RIVER VALLEY	1-10.00				
02N/01W-08B01 H	34.0	10-15-69 4-07-70	21.4 15.8	12.6 18.2	5050 5050
03N/01W-18D01 H	15.0	10-15-69 4-07-70	2.4	12.6 13.2	5050 5050
03N/01W-34J01 H	53.0	10-15-69 4-07-70	34.7 31.6	18.3 21.4	5050 5050
03N/02W-26R01 H	12.0	10-15-69 4 -07- 70	10.2 7.0	1.8	5050 5050
ROUND VALLEY 1-11	L.00				
22N/12W-04B01 M	1351.0	10-16-69 4-09-70	15.6 6.4	1335.4 1344.6	5050 5050
22N/12W-06L03 M	1370.0	10-16-69 4-09-70	3.0 -10.6	1367.0 1380.6	5050 5050
22N/13W-12R01 M	1400.0	10-16-69 4-09-70	28.7 6.4	1371.3 1393.6	5050 5050
23N/12W-31NO1 M	1388.0	10-16-69	(0)		5050
23N/13W-36CO3 м	1410.0	10-16-69 4 - 09-70	28.5 9.6	1381.5 1400.4	5050 5050
23N/13W-36Q01 M	1403.0	10-16-69 4 - 09-70	20.4	1382.6 1400.6	5050 5050
LAYTONVILLE VALLE	EY 1-12.00				
21N/14W-30M01 M	1688.0	10-15-69 4-09-70	15.5 6.8	1672.5 1681.2	5050 5050
21N/15W-01102 M	1682.0	10-15-69 4-09-70	19.5	1662.5 1672.0	5050 5050
21N/15W-12MO2 M	1630.0	10-15-69 4-09-70	16.8 10.6	1613.2 1619.4	5050 5050
21N/15W-24A01 M	1653.0	10-15-69 4-09-70	12.5 3.3	1640.5 1649.7	5050 5050
LITTLE LAKE VALL	EY 1-13.00				
18N/13W-08L01 M	1340.0	10-16-69 4-09-70	9.2 2.9	1330.8 1337.1	5050 5050
18n/13w-17J01 m	1370.0	10-16-69	27.3 21.2	1342.7 1348.8	5050 5050
18n/13w-18E01 m	1365.0	10-16-69 4-09-70	30.9 25.2	1334.1 1339.8	5050 5050
18N/13W-20H03 M	1385.0	10-16-69	(0)		5050
19N/13W-32F01 M	1347.0	10-16-69 4-09-70	15.0 8.3	13 32. 0 1338.7	5050 5050
19N/13W-32L02 M	1350.0	10-16-69 4-09-70	13.7 11.5	1336.3 1338.5	5050 5050


APPENDIX D

SURFACE WATER QUALITY

This appendix presents surface water quality data collected during the period from October 1, 1969, through September 30, 1970. The data were collected from 26 stream stations in the North Coastal area.

At the time of field sampling, dissolved oxygen, pH, and temperature measurements are made and gage height and time are noted. Comments on local conditions are noted in field books which are available in the files of the Department of Water Resources. The mineral constituents were determined in accordance with methods described in "Standard Methods for the Examination of Water and Waste Water", prepared and published jointly by the American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 12th Edition, 1965. In some cases, the methods used were those presented in the U. S. Geological Survey Water-Supply Paper 1454, "Methods for Collection and Analysis of Water Samples", 1960. The analysis for trace elements is in accordance with the U. S. Geological Survey Water-Supply Paper 1540-B, "Concentration Method for the Spectro-Chemical Determination of Minor Elements in Water".

Each station in this appendix has been assigned a station number. The numbering system is described in Appendix B, "Surface Water Measurements". A sequential number (formerly employed) follows each station name for reference.

TABLE D-1 SAMPLING STATION DATA AND INDEX North Coastal Area

Station	Station Number	Location *	Beginning of Record	Frequency of Sampling	Anolyses on Poge
Bear River near Capetown (7b)	F75100.00	Oln/03w-13 H	MAY 1964	Semiannually	41
Black Butte River near Covelo (5h)	F63200.00	23N/11W-28 M	NOV. 1964	Monthly	39, 47
Cel River above Outlet Creek (5d)	F 61329.50	21N/13W-31 M	APR. 1958	Monthly	37, 42, 46
Cel River at Scotia (6)	F61100.00	02N/01E-31 H	APR. 1951	Monthly	36, 42, 43, 4
Cel River at South Fork (5)	F61154.50	01S/02E-26 H	APR. 1951	Monthly	37
cel River, Middle Fork, above Black Butte River (5g)	F63120.00	23N/11W-28 M	NOV. 1964	Monthly	39, 47
Cel River, Middle Fork, at Dos Rios (5c)	F63010.00	21N/13W-06 M	APR. 1958	Monthly	38, 42, 46
el River, South Fork, near Miranda (7)	F64100.00	03S/04E-30 H	APR. 1951	Monthly	40, 49
lamath River above Hamburg Reservoir Site (lc)	F31470.00	46N/10W-14 M	DEC. 1958	Bimonthly	33, 45
lamath River at Orleans (2c)	F31220.01	11N/06E-31 H	JAN. 1964	Monthly	32, 42
lamath River below Iron Gate Dam (1f)	F31600.00	47N/05W-17 M	DEC. 1961	Monthly	34, 42, 45
Damath River near Klamath (3)	F31100.00	13N/01E-24 H	APR. 1951	Monthly	32, 42, 43, 49
lamath River near Seiad Valley (2b)	F31430.00	46N/12W-03 M	DEC. 1958	Monthly	33, 42, 45
ad River near Arcata (6a)	F51100.00	06N/01E-15 H	NOV. 1958	Monthly	35, 42
attole River at Petrolia (7a)	F71100.00	02S/02W-11 R	JAN. 1959	Semiannually	41
Hill Creek near Covelo (5e)	F63050.00	22N/12W-22 M	FEB. 1965	Monthly	39, 47
outlet Creek near Longvale (5b)	F61350.00	20N/14W-01 M	MAY 1958	Monthly	38
dedwood Creek at Orick (3b)	F55100.00	lon/ole-o4 H	NOV. 1958	Monthly	36
almon River at Somesbar (2a)	F34100.00	11N/06E-02 R	NOV. 1958	Semiannually	34
cott River near Fort Jones (1b)	F25250.00	44N/10W-29 M	DEC. 1958	Bimonthly	32
hasta River near Yreka (la)	F21050.00	46N/OTW-24 M	DEC. 1958	Monthly	31
mith River near Crescent City (3a)	F01300.00	16N/01E-10 H	APR. 1951	Monthly	31
rinity River near Hoopa (4)	F41090.00	08N/05E-31 H	APR. 1951	Monthly	34, 42, 46
rinity River at Lewiston (4a)	F41640.00	33N/08E-17 M	APR. 1951	Bimonthly	35, 46
rinity River near Burnt Ranch (4b)	F41376.00	05N/07E-19 H	APR. 1958	Bimonthly	35, 46
an Duzen River near Bridgeville (5a)	F65300.00	01N/02E-12 H	APR. 1958	Monthly	40
illiams Creek near Covelo (5f)	F63105.00	23N/12W-24 M	NOV. 1964	None	**
IIIIamb Green hear Govero ()I)	103107.00	2311/12#-24 11	1104. 1304	Noise	

^{* -} H = Humboldt Base and Meridian.
- M = Mount Diablo Base and Meridian.
** - This atation dropped from the monitoring program, October 1969.

An explanation of column headings follows:

The LAB and SAMPLER agency codes are as follows:

5000 - U. S. Geological Survey

5050 - California Department of Water Resources

TIME - Pacific Standard Time on a 24-hour clock.

GH - The instantaneous gage height in feet above an

established datum.

- The instantaneous discharge in cubic feet per second (cfs). "E" indicates the value has been estimated.

- The dissolved oxygen content in milligrams per liter.

SAT - The percent saturation.

DO

TEMP - Water temperature in degrees Fahrenheit at the time of field sampling. Water temperature in degrees

Celsius is computed from degrees Fahrenheit.

PH IAB & FIELD - Measure of acidity or alkalinity of water.

EC LAB - The electrical conductance in micromhos at 25° Celsius.

EC FIELD - The electrical conductance in micromhos at temperature

when sampled.

TDS - Gravimetric determination of total dissolved solids

at 180° Celsius.

SUM - Total dissolved solids determined by addition of

analyzed constituents.

TH - Total hardness.

NCH - Noncarbonate hardness.

TURB - Turbidity in Jackson Candle Units.

The MINERAL CONSTITUENTS are as follows:

В - Boron K - Potassium CA - Calcium MG - Magnesium CL - Chloride NA - Sodium NO3 - Carbonate - Nitrate SIO, - Silica - Fluoride HCO₃ - Bicarbonate SO), - Sulfate

TABLE D-2

MINERAL ANALYSIS OF SURFACE WATER

NORTH COASTAL AREA

DATE SAMPLER G.H. DO TEMP FIELD MILLIGRAMS PER LITER MILLIGRAMS PER LITER

TIME	LAH	d.				ATORY	MINE	HAL CO	NSTITU	FNTS	IN M	ILLIED	UIVALE REACT	NTS PE	R LIT	EH BIL	LIGRA	TDS	LITER	TURB
*******		000000		******	****	*****	CA	MG	NA	K	C03	HC03	504	CL	E0N	•••••	5102	5UM	NCH	******
	FO	1300.	.00				:	SMITH R	IVER NEA	R CRES	SCENT C	CITY (3	A)							
10/07/69 0710	5350 5050	6.45 250	10.9	54.0F 12.20		156			2.5 •11 7		.00	1.46 94		3.7		•00			80	1
11/04/69 0720	5050 5050	7.38 480	11.5 105	53.0F 11.7C		138			2.0		.00	79 1.33 94	••	3.3		•00			67	2
12/02/69 0815	5050 5050	7.30 445	13.3	41.0F 4.4C		131			1.7 .07 5		.00	74 1•21 92		3.6 .10 8		.10			64	1
01/06/70 0815	5050 5050	10.03 1540	14.0 105	3H.0F 3.3C		101		••	1.6	••	.00	56 •92 91		2.4		.00			48	2
02/03/70 0850	5050 5050	13.54	13.7 116	47.0F 8.3C		86			1.5 .07 8		.00	.80 93	**	1.9		.10			42	65
03/10/70 0805	5050 5050	7200E		45.0F 7.2C		88	••		1.6		.00	50 •82 93	••	2.7	••	.00			42	25
04/07/70 0800	5050 5050	9.24 960E		. 46.0F 7.8C		107		••	1.8 .08		.00	58 •95 89		2.6		.00			50	1
05/12/70 0645		12.20 4120	13.7 115	46.0F 7.8C		101	6.6 .33 31	7.7 .63	1.7	.02	.00	56 •92 88	1.6	3.5 .10	.1	.00		46 50	48	4
06/08/70 1415	5050 5050	8 .00 728	10.9	61.0F 16.1C		122		••	2.2		.00	71 1•16 95		2.8		.00			63	2
07/06/70 1445	5050 5050	7.18 480	10.6 129	79.0F 26.1C		145	••	••	2.6 •11		.00	81 1•33 92	••	1.8		.00			69	1
08/10/70 1415	5050 5050	6.54 285		72.0F 22.2C		155			2.6		.00	95 1.56 101		3.3		.00			77	1
09/15/70 0650	5050 5050	5.93 202	10.1	57.2F 14.0C	7.5 7.6	165	10 •50 28		2.5 •11	.02	.00		4.4 •09 5	3.2	.00	.00		86 82	82 6	4
	F2	1050.	.00				2	SHASTA I	RIVER NE	AR YRE	KA (la	.)								
10/15/69 0705	5050 5050	3.43 192		50.0F	_	502		•-	40 1.74 35		.00	296 4.85 97		.62 12	••	•40			201	8
11/17/69 1430	5050 5050	3.44 196		47.0F 8.3C		473			36 1.57 33		.00	273 4.48 95		23 .65 14		.50			171	4
12/08/69	>050 >050	3.42 191	12.7	44.0F 6.7C		476	••	••	35 1.52 32		5.0 .17	265 4.35 91		.62 13		.50			186	2
01/12/70 1545	5050 5050	3.61 262	11.9	45.0F 7.2C		515			40 1.74 34		.00	299 4.90 95		.62 12		.60			233	20
02/09/70 1715	5050 5050	4.15 487	11.4	49.0F 9.4C	-	478			29 1.26 26		.00	278 4.56 95	••	17 .48 10	••	.40			206	25
03/09/70	5050 5050	4.36 575	11.6	49.0F 9.4C		491	••		33 1.44 29		4.0	273 4.48 91		19 •54 11		.50			209	30
04/14/70 1640	5050 5050	3.41 178		52.0F 11.1C		554			41 1.78 32		7.0 .23 4	321 5.26 95	••	21 .59 11	••	.40			236	7
05/12/70 1355	>050 >050	3.51 235		53.0F 11.7C		580	24 1.20 18	43 3.53 53	42 1.83 28	3.2 .08	9.0	339 5.56 83	9.2 .19 3	.59 9	1.8	.70		315 323	239 57	9
06/16/70 1135	5050 5050	3.16 99		66.0F 18.9C		600			45 1.96 33		.00	367 6.02 100		26 .73 12		.70			252	2
07/13/70 1000	5050 5050	2.73		70.0F 21.1C		583			40 1.74 30		5.0 .17 3	355 5.82 100		.68 12		.60			254	5
08/31/70 1110	5050 5050			67.0F 19.4C		660	39 1.95 26	41 3.37 45	46 2.00 27	3.6 .09		391 6.41 86	9.0 .19 3	30 .85 11	.1	.70		384 365	265 55	10

								NUN	CIN CO	ICAL											
DATE TIME	SAMPLER LAB	G.H. Q	DO SAT		FIEL LABORA PH		MINER CA	MG	NSTITU NA	ENTS K	IN P	MILLIGRA MILLIEQU PERCENT HCO3	JIVALE	ITS PE	R LITE		F 5102	TDS SUM	TH NCH	TUR8	
	F2	5250.	00				S	COTT RI	EVER NEA	R FORT	TONES.	s (1B)									
11/17/69 1135	5050 5050	5.54 126	12.4 113	45.0F 7.20		252			4.0 .17		.00	155 2.54 101		4.9		.00			131	2	
01/12/70	5050 5050	6.27 520	11.9	42.0F 5.6C		185			2.9		.00	108 1.77 96		2.6		.00			99	7	
03/09/70	5350 5050	7.80 1430	11.8	44.0F 6.7C		176			2.8 •12		.00	106 1.74 99		1.0		.10	==		87	55	
05/12/70 1800	5050 5050	6.54 70 8	11.5	48.0F 8.9C		167	11 •55 31	13 1.07 61	2.8	.9	.00	98 1•61 95	1.5	.01	2.2	.00		109	81 1	5	
07/13/70 1330	5050 5050	3.58 71	13.6 170	72.0F 22.2C		261			5.3 .23		.00	157 2•57 98		3.0		.00			134	3	
08/31/70 1505	5050 5050	3.53 45	12.4 155	72.0F 22.2C		276			5.6 .24		.00	161 2•64 96		6.0 .17 6		.10			139	2	
	F3	1100.	00				KI	LAMATH	RIVER N	EAR KI	HTAMA	(3)									
10/07/69 0900	5050 5 000	6.05 2910	10.5	57.0F 13.9C		221	19 •95 41	9.5 .78 34	12 •52 23	1.8 .05 2	.00	113 1.85 81	14 •29 13	5.2 .15 7	.00	.00	•1 19•0	137	86 6	2	
11/04/69 0910	5050 5000	5.01 4330	10.7	55.0F 12.8C		233	18 •90 38	9.4 •77 32	15 •65 27	2.2	.00	113 1.85 76	19 •40 17	4.8 .14 6	1.9	.05	24.0	151	84	5	
12/01/69 1530	5050 5000	5.02 4850	13.4	45.0F 7.20	-	215	18 •90 40	9.5 .78 35	12 •52 23	1.9	.00	106 1•74 80	14 •29 13	3.6 .10 5	2.4	.05	26.0	140	84	7	
01/05/70 1700	5050 5000	7.86 12800	13.6 106	41.0F 5.0C		166	16 •80 47	7.4 .61 36	6.2 .27 16	1.0	.00	86 1•41 84	9.0 .19 11	1.8	1.4	.03	18.0	104	70 0	3 3	
02/03/70 1050	5050 5000	15.81 60500	13.3	45.0F 7.2C	7.4 7.8	141	14 •70 47	6.4 .53 36	5.1 •22 15	.03	.00	74 1•21 85	7.0 .15 10	1.6	1.0	.02	·1 16.0	89	62	180	
03/10/70 0950	5050 5000	12.31 34700	11.8	47.0F R.3C		161	17 •85 49	7.4 .61 35	5.5 •24 14	.03	.00	85 1•39 82	12 •51 10	3.2 .09 5	.00		15.0	102	73 4	85	
04/07/70 0935	5050 5000	12.24	12.3	51.0F 10.5C		160	17 •85 50	7.2 .59 35	5.6 •24 14	1.0	.00	85 1•39 85	8.0 .17 10	2.8 .08 5	•0	•04	.2 14.0	98	72 3	10	
05/11/70 1815	5050 5000	8.33 128 00	107	52.0F 11.1C	7.8	145	14 •70 •7	6.6 •54 •36	5.0 •22 15	.02	.00	74 1•21 79	13 •27 18	2.1	.00		12.0	91	62 2	25	
1250	5050 5000	7.27 8300	105	64.2F 19.0C	7.6	169	17 .85 47	7.5 .62 34	7.2 .31 17	1.3	.00	1.38	.29 17	2.7 .08 5	.00	.04	15.0	107	74	4	
07/06/70	5050 5000	5.78 4000	8.3	75.0F 23.9C	7.8	206	21 1.05 49	8.8 .72 33	•35 16	1.7		108 1.77 83	14 •29 14	2.4	.00		16.0	126	88	22	
08/10/70 1245 09/14/70	5050 5000	5.16 2520	104	73.4F 23.0C	7.9	245	1.10 43	9.8 .81 32	.61 .24	2.0	.00	119 1.95 77	21 •44 17	5.2	.00	.02	7.8	141	96 2	1	
1415	5050 5000	5.33 2360	105	63.0F 17.2C		247	21 1.05 42	9.4 .77 31	14 •61 24 RIVER A	.06	•00	1.87	•40 16	4.3 .12 5			14.0	141	3	,	
10/06/69	5050	2.80		57.0F	8-3				15		.0	111		6.7		.10			81	2	
1210	5950	1450	150	13.9C	8.0	223			.65 29		.00	1.82 82		.19		.10			82	4	
1405	5050	3.13 2620	115	12.2C	7,9	247			.87 35		.00	1.90		.18		.20			72	3	
1315	5,750	3940	115	6.1C	7.7	210			•65 31		.00	1.67		.18		.10			67	20	
1445	5050 5050	8000	113	3.3C	7.3	170			8.8 •38 22 6.5		.00	1 • 3 A 81		.10		.10	••			220	
1235	5050	29600	119	6.1C	7.6	148			•28 19		.00	1.30 88		.05		.10			61	80	
1350	5,50	19100	115	7.8C		150			•33		.00	1.34		.09		•10					

DATE TIME	SAMPLER LAR	3	DU SAT		FIEL LABORA PH		MINE:		TH CO	ENTS	IN M	ILLIGA ILLIEG ERCENT	AMS PER UIVALE REACT 504	NTS PE	R LITE	8	LIGRAM F 5102	5 PER I	LITER TH NCH	TURB
		1220					F	HTAMAIN	RIVER A	T ORL	EANS (2C)		CONTIN	UED					
04/06/70 1250	5050 5050	5.63 7040	12.7	50.0F		164			6.9 •30		.00	85 1.39 85		2.5		.20			68	8
05/11/70 1230	5050 5050	5.43 6610	12.5	45.0F 8.9C	-	152	14 •70 45	6.6 •54 35	6.2 .27	1.2	.00	76 1•25 81	9.7 .20	3.2	.2	.10		95 79	62	8
06/08/70 1035	5050 5050	4.74 52 70	10.1	63.0F 17.2C		152			8.5 •37 24		.00	77 1•26 83		2.8		.10			61	10
07/06/70 1100	5050 5050	2.48 2550	9.3 109	73.0F 22.8C		218			12 •52 24		.00	106 1•74 80		3.5 .10 5		.00			84	2
08/10/70 1015	5050 5050	1.68 1700	9.3 109	73.0F 22.8C		270			19 •83 31		.00	127 2.08 77		7.1 .20 7		.10			95	4
09/14/70 1150	5050 5050	1.39 1830	11.0	60.8F 16.0C	-	238	17 •85 34	9.8 .81 33	17 •74 30	2.8	.00	112 1.84 76	19 •40 17	5.5 .16 7	.7	•00		144 128	83	10
	F3	1430	.00				F	HTAMAIN	RIVER 1	VEAR SI	ELAD VA	LLEY (2B)							
10/14/69	5050 5050	1750	12.0	57.0F 13.9C		258			20 •87 34		.00	122 2.00 78		6.4	3.9 .06 2	•50			86	2
11/17/69	5050 5050	3350	11.6	48.0F 8.9C	-	227	••	••	19 •83 37		.00	106 1.74 77	••	6.1	3.5 •06 3	.10			76	5
12/08/69 1540	5050 5050	2990	12.7	43.0F 6.1C	-	212			16 •70 33		.00	105 1.72 81		7.4 .21 10	5.6 •09 4	.20			71	5
01/12/70 1255	5050 5050	4280	12.8 104	40.0F 4.4C		224			17 •74 33	••	.00	110 1.80 80		4.7 .13 6	3.9 .06 3	•50			81	15
02/09/70 1350	5050 5050	9190	12.9 114	46.0F 7.8C		186		••	12 •52 28		.00	109 1.79 96	••	3.0 .08 4	3.1 .05 3	.10			73	45
03/09/70 1250	5050 5050	884 o	12.7	45.0F 7.8C		208			13 •57 27		.00	108 1•77 85	••	4.3	.01	.20			78	45
04/14/70 1430	5050 5050	3280		49.0F 9.4C		231	•-	••	15 •65 28		9.0 .30 13	108 1.77 77	••	6.5	.00	.10			90	9
05/12/70 1630	5050 5050	3130		49.0F 9.4C	-	256	10 •50 19	17 1.40 52	17 •74 27	2.4	.00	125 2.05 78	21 •44 17		1.4	.10		170 136	96 8	5
06/16/70 1400	5050 5050	1910		65.0F 18.3C		252			16 •70 28		.00	122 2.00 79	••		1.8	.20	••		97	3
07/13/70 1230	5050 5050	1100		71.0F 21.6C		276			21 •91 33		.00	130 2.13 77		6.5	.00	•20			101	3
08/03/70 1325		1280		72.0F 22.2C		300		••	24 1.04 35		.00	126 2.07 69	••	7.7		.20			98	2
08/31/70 1355		1170		74.0F 23.3C		307	16 .80 26	13 1.07 35		3.2	.00	128 2.10 68	36 .75 24	8.1 .23 7	.00	.20		186	95 12	8
	F3	1470	.00				F	HTAMAI	RIVER A	BOVE I	HAMBURO	RESERV	OIR SIT	E (1C)					
11/17/69 1345	5050 5050	3160E		49.0F 9.4C		225			20 .87 39		.00	105 1.72 76	••		3.6	.10			70	4
01/12/70 1340	5050 5050	3200E		39.0F 3.9C		235			21 •91 39		.00	111 1.82 77			5.0 .08 3	.20			76	28
03/09/70 13 4 5	5050 5050	568Œ		46.0F 7.8C		224			18 •78 35		.00	109 1.79 80	**	5.0 .14 6	.2	.20	••		77	40
05/12/70 1555	5050 5050	156 0 E		50.0F		317	17 .85 25	16 1.32 39	27 1•17 34	3.3	.00	144 2+36 72	35 •73 22	6.2 .17 5	1.6	.20		194 178	107	3
07/13/70 1150	5056 5050	75 0E		70.0F 21.1C		284			25 1.09 38		1.0	122 2.00 70		6.2	.8	.20			90	7
08/03/70 1240	>050 5u50	1070E		73.0F 22.8C		296	17 .85 27	12 .99 32	28 1.22 39	3.1		121 1.98 66	.81 27	7.2 .20 7	.00	.00		179 167	91 7	3

								NORT	H COA	STAL	. ARE	A								
DATE	SAMPLER LAB	G.H.	DO SAT		FIEI LABOR	ATORY					IN M	ILLIGRA ILLIEON ERCENT	REACT	NTS PE	R LITE	8	F	TOS	Тн	TURB
*****	*******	*****	*****	*****	****	*****	CA	MG	NA	K	C03	HC03	504	CL	N03	*****	5102	SUM	NCH	******
	F3	1470.	.00				K	HTAMAI		BOVE I		RESERV	OIR	CONTIN	UED					
08/31/7 1310	0 5050 5050	1050E		73.0F 27.8C		310			26 1.13 36		. 0	128 2•10 68		8.7 .25 8	.6 .01	•20			93	2
	F3	1600	.00				K	LAMATH	RIVER I	ELOW 1	RON G	TE DAM	(IF)							
10/15/6 0750	9 5050 5050	1310		56.0F 13.3C		217			19 •83 38		.00	90 1.48 68	••		5.3	.10			63	0
11/17/6 1530	9 5050 5050	2970	8.9 83	49.0F 9.4C		201			19 •83 41		.00	89 1 • 46 73			3.2 .05 2	.10			60	4
12/08/6 1350	9 5050 5050	1690		43.0F 6.1C		172	40.00		15 •65 38		.00	79 1•30 76		4.8 •14 8	5.4	.10			65	6
01/12/7 1450	0 5050 5050	2940	12.7	37.0F 2.8C		208			20 .87 42		.00	92 1•51 73		5.6 .16	5.7	.10			62	14
02/09/7 1600	0 5050 5050	5240	13.8	42.0F 5.6C	-	154			15 •65 42		.00	84 1.38 90		2.9	4.2	.10			45	25
03/09/7 1500	0 5050 5050	5110		46.0F 7.80		183			18 •78 •43		.00	88 1.44 79		4.8	.1	.10			55	25
04/14/7 1600	0 5050 5050	1360		51.0F 10.5C		237			22 •96 41		.00	105 1•72 73		5.8 .16	.7	.20			78	7
05/12/7 1445	0 5050 5050	1330	12.8 125	52.0F 11.1C		297	11 •55 18	15 1.23 39	29 1.26 40	3.9	.00	115 1.89 63	46 • 96 32	4.9	1.9	.10		214 169	88	2
06/16/7 1215	0 5050 5050	710	13.4	66.0F 18.9C		304	••		29 1.26 41		5.0 .17	105 1.72 57		6.9		•50			90	2
07/13/7 1040	0 5050 5050	721		72.0F 22.2C		274			26 1.13 41		3.0	104 1•71 62		5.8	1.6	.20			86	3
08/03/7 1030	0 5050 5050	1040	9.7 118	77.0F 22.2C		295	15 •75 24	12 •99 32	29 1.26 41	4.0	.0	114 1•87 63	.92 31	6.5	.9	•00		187 168	88	1
08/31/7 1150	0 5050 5050	1020		71.0F 21.6C		281			25 1.09 39		.00	111 1.82 65		5.8 .16 6	.7	• 20	==		79	2
	F3	4100	• 00				S	ALMON I	RIVER AT	SOMES	SBAR (2A)								
01/05/7		3.77 1090		37.0F		114			1.9		.00	61		1.0		•10			53	2
05/11/7		6.69	111	2.8C	7.3	114	10	1.9	1.7	.9	• 0	1.00	3.1	1.0	.1	.00		52 38	33	5
1330	5050	1750	111	7.20	7.5	74	.50 67	21	•07	.02	.00	•64 88	•06 8	.03	.00			38	1	
	F4	1090	• 00				T	RINITY	RIVER I	EAR HO	OOPA (4)					,			
10/06/6 1050	9 5050 5050	13.21 307	15.0 153	61.0F 16.1C		219	••		3.4 •15 7		.00	119 1.95 89	**	3.9 .11 5	1.1	.10			106	1
11/03/6	5050 5050		11.9 114	56.0F 13.3C		212			4.3 .19 9		.00	110 1.80 HS	••	5.8 .16 8	.6 .01	.00			101	2
12/01/6	5050 5050	13.52 679	12.3	45.0F 7.20		215	••		4.0 .17 8		00	111 1.82 85		6.0 .17	.01	.10			100	2
01/05/7 1215	0 5050 5050	4500	102	40.0F 4.4C	7.3	178			3.2 •14 8		.00	95 1•56 88		2.5	.9	.10			86	47
02/02/7 1120	5050	17500	110	46.0F 7.8C	7.4	146	••		2.6 •11 A		.00	83 1+36 93		1.8 .05 3	.5 .01 1	.10			72	
03/09/7 1240	70 5050 5050	20.48	12.2	47.0F 8.3C	7.3 7.8	144			2.6		.00	82 1•34 93		1.7	-4 -01 1	.00			70	140
04/06/1	70 5050 5050	17.25 3600	11.7	52.0F 11.1C		177	••	••	3.1 •13 7		.00	45 1.56 84	~•	2.1 .06 3	.00	.00			91	20
05/11/7 1130	5050	3000	107	49.0F 9.4C	8.1	148	15 .75 48	8.4 .69 44	2.7	.02	.00	82 1.34 85	7.1 .15 9	3.1	.2.	.10		73 78	72	6
06/08/1 0925	70 5050 5050	15.58		63.0F 17.2C		154			3.0 •13 8		.00	1.41		1.8 .05 3	.00	.00			11	10

MINERAL ANALYSIS OF SURFACE WATER

NORTH COASTAL AREA

0475	5 _{AMPLFR}	G U	0.0	TEMP	515			HOK	IH LI	UNJI			WE SE	2 1 2 7 5	0	2471.4	10040	5 050	1750	
DATE	LAB	Q	SAT			EC	CA	RAL COM	NA		IN	MILLIGRA MILLIEOU PERCENT HCO3	REACT	NTS PE	R LITE	R	F 5102	TOS SUM	TH NCH	TURB
*******		1090.	00	******	••••			FRINITY	RIVER N	EAR HO	OPA ((4)	•••••	CONTIN	uE0			******	*****	••••••
07/06/70	5050 5050	14.70	8.9	71.0F 21.6C	_	190			3.8		.00	101 1•66 87		2.2	.3	.00			90	1
08/10/70 0915	5050 5050	13.82 482	9.0	68.0F 20.0C		216		••	3.7 •16 7		.00	127 2.08 96		4.1	.2	.10			104	2
09/14/70 1045	5050 5050	13.69	9.8 104	64.4F 18.0C		211	27 1.35 61	7.7 .63 28	4.5		.00		10 •21 10	5.0 .14 7	.1	.00		112	99 11	2
	F4	1376.	00				1	PRINITY	RIVER N	EAR BU	IRNT I	RANCH (4	в)							
11/03/69 1055	5050 5050	430	11.9	51.0F 10.5C	-	157	••	••	4.4 •19 12		.00	83 1.36 87		6.8 .19 12	.00	.00			71	2
01/05/70 1115	5050 5050	1150	13.8		7.3 7.4	158			3.2 .14 9		.00			3.8 .11 7	•4 •01 1	.10			74	3
03/09/70 1130	5050 5050	3010	12.5	46.0F 7.8C		138		-	2.6 •11 8		.00			2.0	.00	.00			66	12
05/11/70 1005	5050 5050	1050	11.7 111	53.0F 11.7C	-	126	15 •75 57	5.2 .43 33	2.6	.9	.00		5.1 .11 8	4.1	.00	.00		66 67	59 3	1
07/06/70 0850	5050 5050	510	9.0 105	72.0F 22.2C		123		***	3.2 •14 11		.00			2.4	.00	.00			55	1
09/14/70 0945	5050 5050	280	10.1	59.0F 15.0C		154	16 .80 50	6.8 •56 35	4.5 .20 13	1.0	.00		2.1 .04 3	6.0 .17 11	•4 •01 1	.00	••	81 76	68	5
	F4	1640.	00				5	PRINITY	RIVER A	T LEWI	STON	(4A)								
11/03/69 0930	5050 5050	3.35 242	10.7		7.3 7.8	94	••		2.2 .10 11	••	.00		••	2.4	•1	•00	••		43	3
01/05/70 0930	5050 5050	2.97	9.6 79		7.1 7.1	97			2.6		.00			1.5	.5 .01 1	.10			43	7
03/09/70 0955	5050 5050	2.94 148	12.1	45.0F 7.20		80	••	••	2.i .09 11	••	.00	47 •77 96	••	1.7	.2	.10			36	12
05/11/70 0840	5050 5056	2.99 160	12.4	47.0F 8.3C		83	4.3 .21 24	6.7 •55 63	2.1 .09 10	.9	.00		1.8 .04 5	1.8	.2	.10		44	38	5
07/06/70 0730	5050 5050	2.99 155	11.0 97	45.0F 7.20		86		••	2.8 •12 14		.00			.01	•1	.00			38	2
09/14/70 0830	5050 5050	3.21 195	10.6	47.0F 8.3C		79			2.2 •10 13	••	.00			1.6	•1	.10	••		37	1
	F5	1100.	00				1	MAD RIVE	R AT A	RCATA ((6A))								
10/07/69	5050 5050	3.23 32	10.9	58.0F 14.4C		196			4.7 .20 10		.00		••	3.5 •10 5	••	.10			94	1
11/04/69 1055	5050 5050	3.57 53	11.1	57.0F 13.9C		200	••	••	4.5 .20 10	••	.00		••	3.0		.10			93	5
12/02/69	5050 5050	4.58 183	13.1 108	45.0F 7.2C		155	••		3.2 .14 9		.00			2.6	••	.10			71	3
01/06/70 1100	5050 5050	6.16 693	13.6 105	40.0F 4.4C		128	6 0	en en	2.9 •13 10		.00			1.9	••	.00			57	33
02/03/70 1310	5050 5050	8.71 2450	12.7	49.0F 9.4C		98			2.7		.00	_		2.5		.10			43	200
03/10/70 1205	5050 5050	8.22 2340	12.8	49.0F 9.4C		98		••	3.2 .14 14		.00		••	2.2		.00			43	190
04/07/70 1125	5050 5050	6.04 533	13.1 119	52.0F 11.1C		156	••	••	3.5 •15 10	**	.00		••	3.3 .09 6		.00			69	12
05/12/70 0930	5050 5050	7.02 1130	12.3	59.0F		114	15 •75 64	2.6	3.8 .17 15	1.4.04	.00		7.2 .15 13	4.8 .14 12	.5	.10		80 61	48	60
06/09/70 0840	5050 5050	4.28 78	10.1	59.0F 15.0C	7.4	195		••	5.3 .23 12		.00		••	7.1 .06 3		.10			91	3

MINERAL ANALYSIS OF SURFACE WATER

								NUR	IH CU	IASIA	IL AI	REA								
DATE	SAMPLER IAB	G.H.	SAT	TEMP	FIEL LABORI PH	EC		MAL CO	NA	ENTS K	IN	AILLIGR AILLIEG PERCENT HCO3	UIVALE REACT SO4	NTS PE	ALUE NO3		F S102	TDS SUM	TH NCH	TURB
		1100.						MAD RIVE	ומ ידים אדי	RCATTA	(6A)			CONTIN						
07/07/70 0800	5050 5050	3.78 25	9.1 95	64.0F 17.8C		299			8.7		.00	147		3.9		.10			137	1
09/15/70 1010	>050 >050	3.76 26	10.8	55.0F 12.8C	_	202			4.3 •19		.00	109 1.79 89		2.9	••	.10	=		95	10
	F5	5100.	.00					REDWOOD		AT ORI	CK (3									
10/07/69 0955	5050 >050	4.08		54.0F 12.20		162		••	5.5 •24 15		.00	72 1•18 73		8.3 .23 14		.10			69	S
11/04/69 1005	5050 5050		11.9	55.0F 12.8C		188			5.2 .23 12		.00	76 1•25 66		6.8		.00			81	2
12/02/69	5050 5050	4.46	14.0	44.0F 6.7C	_	174	••		4.4 •19 11		.00	72 1.18 68		6.3 .18 10		.10			74	3
01/06/70 1010	5050 5050	6.42 700	13.3	40.0F 4.4C		102			2.9 •13 13		.00	42 •69 68	••	3.0		.00	==		42	35
02/03/70 1210	5050 5050	8.47 1860	12.7	48.0F 8.9C		78	••	,	2.6 •11 14		.00	33 •54 69		3.1 .09 12		.10			31	210
03/10/70 1100	5050 5050	8.31 1840	12.2 105	48.0F 8.9C		88			3.2 •14 16		.00	39 •64 73		3.7 .10 11	₩•	.00			36	180
04/07/70 1030	5050 5050	6.73 450	109	49.0F 9.4C		115	••		3.2 •14 12	••	.00	48 •79 69		4.6 .13 11		.00			48	7
05/12/70 0840	5050 5050	9.54 290E	108	48.0F 8.9C	7.6	103	.70 66	2.2 .18 17	3.2 •14 13	.04	.00	•69 67	9.2 .19 18	4.9 .14 14	.6 .01 1	.10		56 57	10	190
06/09/70° 0745	5050	5.88 170E	98	56.0F 13.3C	7.8	138	••	••	4.7 .20 14	••	.00	65 1.07 78		4.0 .11 8		.00			63	8
07/07/70	5050	95E	98	59.0F 15.0C	7.7	164	••	••	4.8 •21 13		.00	73 1.20 73	•-	4.7 .13 8		.00			70	2
08/11/70 0705	5050	5.19	8.9	59.0F 15.0C	7.6	171	•-	••	4.9 •21 12		.00	78 1.28 75	••	7.0		.00			74	1
09/14/70 0915	5050 5050	4.86 19E		54.0F 12.2C		164		EEL RIVE	5.7 •25 15	COTTA	.00	72 1•18 72	••	7.0 .20 12		.10			69	2
10/07/69	5050	8.36		63.0F	8 4		39	13		1.5	` '	172	23	7.6	.0	0.7	,		151	,
1340	5050	115	143	17.2C	8.3	322	1.95	1.07	13	.04		2.82	.48	.21	.00	.07	8.5	189	10	1
1335	5000	247		16.7C	8.3	314	2.00	11 .90 27	8.3 .36 11	1.3	.00	2.56 76	.60	8.0 .23 7	.00	.11	7.3	183	146 17	3
1425	5000	295	113	10.5C	8.1	321	2.05 59	.99 29	.39 11 5.8	1	.00		.60 18	.16 5	.00		8.1	185	24	24
1545	5000	9000E	105	5.6C	7,7	194	1.15 57	.59 29	•25 12	.03		1.59 81 76	•31 16	.06	.00		11.0	114	66	100
1550 03/10/70	5000	10500E	108	9.4C 50.0F		149	.90 58	.42 27 5.5	•21 14	1 1.6	.00	1 • 25 83 71	19 13	3	.01	.04	11.0	89	65	180
1430	5050	11.43		10.0C	7.9	138	.85 55	.45 29 7.8	.20 13	.04 3	.00	1.16 79	.23 16	.07 5	.01	.07	.3	88	100	5
05/12/70	5000	10.26		14.4C 58.0F	8.1		1.35	8.1	.28 12 6.5	1 1.1	.00	1.84	.35 15	3.6	.00	.07		129	101	10
06/09/70	5050	1150E		14.4C 62.6F	8.2		1.35	.67 29	·28 12 7.8	1 1.4	.00	1.94	.40 16	5.2	.00	.20		134	126	1
07/07/70 1030	5000 5050 5000	570E	12.5	71.0F 21.6C	8,4		1.70 59 36 1.90	.82 28 11	8.8 •38	1 1.7	.0	2.35 79 152 2.49	.46 16 22 .46	•15 5 4.6 •13	.00	.19	.2	165	9 135 11	7
							58	29	12	1		81	15	4						

DAT		SAMPLER LAB	G.H.	OO SAT		F1EL LABORA PH		MINE		NSTITU	ENTS	IN	MILLIGR MILLIEG PERCENT MCO3	UIVALE	NTS PE	R LITE	R B	F 5102	MS PER L	TH NCH	TURB
••••		_			•••••								•••••	•••••	*****	•••••	••••	•••••	•••••	*****	*******
			6 1100.	· .					EEL RIVE			` '			CONTIN	UED					
	1/70	5050	100E	10.7	73.4F 23.0C		324	2.05 58	12 .99 28	9.8 .43 12	1.6	.00		.46 13	7.0	.00	.00	7.2	186	152	0
	5/70 55	5050 5000	77E	126	64.0F 17.8C		325	41 2.05 57	13 1.07 30	9.5 •41 11	1.7	.00		.46 14	7.2 .20 6		.01	.3 8.0	185	156	8
		F	6 1154.	50					EEL RIVE	ER AT SO	OUTH F	ORK (5)								
	7/69	5050 5050	31E	10.3	64.0F 17.8C		325			7.5 .33		.00	158 2.59 80		7.4		.20			156	1
	30	5050 5050	83E	10.4		7.7 8.3	330			8.0 •35		.00	146 2.39 72		10 .28	~-	.30			153	2
	2/69	5050 5050	80B	12.7		7.6 7.9	316			7.0		.00	146 2.39 76	••	8.2 .23		.30			148	1
	7/70	5050 5050	1470E	13.3		7.3 7.4	187			4.6 .20		.00	93 1.53 82		2.5		.10			85	24
	4/70	5050 5050	7300E	12.4	48.0F 8.90	7.8 7.9	149			3.7 .16		.00	78		1.6		.20			69	240
	0/70	5050 5050	10200E	12.4	49.0F 9.4C	7.9 8.0	138			4.0 •17	,	.00	74		1.6		.00			64	250
	8/70	5050 5050	1160E	11.5 108	54.0F 12.20		216			5.0		.00	110		3.5		.10			99	7
	2/70	5950 5950	818E	11.3	59.0F 15.0C	8.n 8.2	726	29 1.45 58	8.1 .67 27	8.1 .35	1.0	.00	113 1.85 78	19 •40 17	4.4	.1	.20		117 126	106	6
06/0	9/70	5150 5350	230E	9.6	65.0F 14.30		259			6.8		.00	135		3.0		.10			129	6
	7/70	5050 5050	95E		69.0F 20.50		225			9.6			119 1.95 87		3.2	==,	.00			106	1
	1/70	5350 5357	34E		74.0F 23.3C		329			8.0 •35		.00	161		5.9		.20			154	1
	5/70	5050 5151	ŹlE	10.1 106	64.0F 17.8C		345			9.8 •43		.00	171		7.2		•50			166	1
		6.1	5 1329.	50				1	ERT. RTVF		CITTIJ	स्य ८ स	EK (5D)							
10/0	8/69 50	5450	1.77	9.7	59.0F 15.00	-	267			8.9		.0			5.7	.1	.40			115	1
	5/69	5/50 5/50		16.2	56.0F 13.30		278			9.9 •43		.00	122		9.4 .27	.2	•50			122	10
	3/69	5.50 5.50	1.97 80E		41.0F 5.00		288			8.9 .39		.00			9.4	.1	.70	==		127	1
	7/70	5356	2.86 273	13.4	38.0F		160			4.6		.00	79		2.1		.20			12	91
02/0	4/70	5.50 5.50	5.70 1900	18.3	8.9C		120			3.8 •17		.00	65		1.8	.2	.10			54	150
	1/70	5750	1600	12.1	44.0F 4.9C		124			4.2 .1R		.00	66 1.08 87		1.8	.3	.10			55	90
	3/70 05	5 150 3 150	122		51.0F		202			5.6		.00	101		2.3 .06	.00	.20			102	3
	3/70	5.451 5.50	58	11.3	56.0F		559	27 1.15 55	8.4	9.2 •40 16	1.1	.00	115	18 • 37 15	5.4	.1	.30		127	102	2
	0/70	5050	29		64.0F 17.8C	-	231		w ==	H.S .37		.00	116		3.1	.1	.30			101	2
	30	5.50 5.51	10		74.0F 23.30		237			10 •44 19	••	.00	107 1+75 74		3.9	.1	.40			98	1

MINERAL ANALYSIS OF SURFACE WATER

DATE TIME	SAMPLER LAB	G.H.	DO SAT	TEMP	FIEL LABORA PH		MINER CA	AL CON	IST]TU		IN A	MILLIGRA MILLIEOU PERCENT HCO3	IVALEN	ITS PER	LUE	ER B	IGRAM F SIO2	S PER (LITER TH NCH	TURB
******	F6	1329.	50	*****			1018	L RIVE	R ABOVE	OUTLE	T CRE	EK (5D)		ONTINU	ED					
08/12/70 0730	5050 5050	4.0		73.0F 22.8C		248		••	11 •48 19		.00	105 1•72 69		8.6 .24	.1	.60			102	1
09/16/70 0840	5050 5050	1.74 2.8	9.6 100	61.0F 16.1C		274			12		.00	118 1.94 71		8.6	.1	.60			115	1
	F6	1350.	00				OU	TLET C		AR LON	IGVALE	(5B)								
10/08/69 0825	5050 5050		10.0	59.0F 15.0C		336		••	16 •70 21		.00	145 2•39 71		32 .90 27		2.60			135	1
11/05/69 0745	5050 5050		10.3	55.0F 12.8C		323			16 •70 22		.00	138 2•25 70		25 .71 22		2.50			126	5
12/03/69	5050 5050		12.7	40.0F 4.4C	8.0	326			16 •70 21		.00	151 2.44 76		20 .56		1.90			134	1
01/07/70	5050 5050		13.1	39.0F 3.9C	7.3 7.4	151			6.3 .27		.00	72 1•18 78	••	5.9 .17 11		•40			57	7
02/04/70	5050 5050		12.1	49.0F 9.4C	7.3 7.3	114			4.6		.00	57 •93 82		3.7	•-	.30			46	20
03/11/70 0825	5050 5050		11.6	49.0F 9.4C	7.3 7.6	105			4.4		.00	53 •87 •83		3.2		.10			43	25
04/08/70 1535	5050 5050		10.9	50.0F 15.5C	-	183			7.2 .31		.00	94 1 • 54 84		6.4 .18 10		.40			81	5
05/13/70 0740	5050 505 0		10.9	55.0F 12.8C		217	22 1.10 46	9.7 .80 34	10	1.2	.00		7.7 .16	9.9 .28 12	.1	.90		119 117	45 3	2
06/10/70 0720	5050 5050	0.43	9.2 99	64.0F 17.8C		251			12 •52 21		.00	129		11 ,31 12		1.10			106	3
07/08/70 0700	5050 5050	3.5	7.5 90	74.0F 23.3C		281								15 •42 15		1.60			111	l
09/16/70 0825	5050 5050	1.14	8.7 87	58.0F 14.4C		327			17 •74 23		.00	142		31 .87 27		2.70			129	1
	F6	3010.	.00				I	EL RIV	_	LE FOR	K.AT	DOS RIOS	(5C)							
10/08/69		7.22	10.6	59.0F 15.0C		340			8.7 .38		.00	113		16 .45 13	.1	. 30			147	0
11/05/69 0850	5050 5050		10.5	55.0F 12.8C		334			10 •44 13		.00			13 •37 11	.00	.10	***		151	105
12/03/69	5450 5950		13.3	42.0F 5.6C	H.3 8.3	313			7.4 .32		.00			12 •34 11	.1	. 30			144	2
01/07/70	5450 5450		13.8 106		7.4 7.6	176			3.5	••	.00			2.5 .07 4		.10			มง	17
02/04/70	5050 5050		12.9		7.8 7.8	159			3.8 •17		.00			1.7	.2	.10			74	230
03/11/70	5050 5050	11.72	13.0	45.0F 7.20		147	••		3.8 •17		.00		~ •	1 + 4	.4	.10			68	1 140
04/08/70 1435	5050 5050			55.0F 12.80		205			4.1		.00			2.1 -0h 3	.00	.00			102	2 0
05/13/70	5051 5050			54.0F		193	25 1.25 63	6.0	5.3 .23	н. 20.	.00		17 .35 18	2.5	.1	•00		104	в? 9	50
06/10/70) 5050 5050	6.31	10.1 E 107	63.0F	8.8	251			6.4 •28		.00	119 1•95 78	••	4.0	•1 •00	.10			120	4
07/08/70	5050 5050	45	8.7 104	74.0F 23.30	8.1	319			10		•00	135		7.0	.00	.10			145	1
08/12/70 0800	5050 5050	8.11 15		72.0F		341			11 •48 14		.00	116	••	16 .45 13	.00	.20			158	1

MINERAL ANALYSIS OF SURFACE WATER

								NU	KIH U	UASI	AL /	AKEA								
DATE	SAMPLER LAB	G.H.	DO SAT	ТЕМР	LABOR	LD ATORY EC		HAL CO			IN	MILLIE	QUIVALE	TANCE	ER LIT	8 EH		TOS SUM	TH NCH	TURB
		3010,	00													•••••	*****		*****	
-0414470					0 -			EEL RIV		LE FOR	-		(50)		NUED					
09/16/70 0925	5050 5050			64.0F 17.8C		370			12 •52 14		.00			.56 15	.00	.30			160	1
	F6	3050.	00					MILL CR	EEK NEA	R COVE	IO (5	E)								
01/07/70 1250	5050 5050	8.42 28	12.6	39.0F 3.9C	7.7 7.6	222			5.8		.00	114		3.9		.00			102	4
02/04/70	5050 5050	9.1 ⁴ 218	11.7	49.0F 9.4C	7.5 7.6	188			5.8 •25		.00	10H 1•77		3.6 .10	.9	.10			89	25
03/11/70	5050	9.41	11.3	49.0F	7.4				13		.0	94		3.0	.4	.00			85	35
1030	5050	8.29	10.8	8.9C	7.9	187			·26 14		.00	1 • 84 98		2.0	•01	.00			142	2
1340 05/13/70	5050 5050	29	114	16.10	8.2	289	22	10	•31		.00	2.79		.06	•00					
1000	5050	13	115	59.0F 15.0C	8.2	333	33 1.65 45	19 1.56 42	10 •44 12	.03	.00	202 3.31 91	10 •21 6	4.5 .13 4	.00	.00		160 179	159	
06/10/70 0915	5050 5050			67.0F 19.4C		362		••	12 •52 14		.00	221 3.62 100		3.1 .09 2	.00	.00			175	4
	F6	3120.	00				1	EEL RIV	ER, MIDD	LE FOR	K,ABOV	E BLACK	BUTTE F	RIVER (5G)					
10/08/69 1035	5050 5050	9.8	10.8	62.0F 16.7C	8.3	376		••	17 •74 20		.00	119 1.95 52	••	34 .96 26	.1	•40			142	1
11/05/69	5050 5050	770	11.4	50.0F 10.0C		131			3.6		.00	54		5.6	.3	.00			55	50
12/03/69 1215	5050 5050	24	12.7 113	47.0F 8.3C		258			9.2		.00	100 1.64		18 .51	•1	.30			105	2
01/07/70 1405	5050 5050	2008		39.0F 3.9C		129			3.0 •13		.00	64 62 1.02		2.7		.00			57	4
02/04/70	5050		12.7	46.0F	7.5			••	2.6		.0	79 52		1.8	.1	.00	••		47	65
1405	5050	830	112	7.8C		104	••		2.3		.00	•85 82 49	••	.05	.00	.00			43	80
1135	5050	940	110	6.70	7.8	94			•10		.00	·80 85		.04	.00					
1235	5050		112	51.0F 10.5C	8.0	128		••	3.1 .13 10	••	.00	61 1.00 78		.03	.00	.00			60	3
05/13/70 1100	5050 5050	130E		53.0F 11.7C		116	16 •80 70	2.4 .20 18	3.0 .13 11	.01	.00	56 •92 81	6.4 •13 12	3.0 .08 7	.00	.00		66 59	50	5
06/10/70 1005	5050 5050	60E		64.0F 17.8C		173			5.7 .25 14		.00	79 1.30 75		5.5	.00	.10			74	2
07/08/70 0925	5050 5050	26 e		72.0F 22.2C		267			11 •48 18		1.0	103 1.69 63		15 .42 16	.00	.10			110	0
08/12/70 0900	5050 5050	8E		72.0F 22.2C		356			15 •65 18	••	.00	118 1.94 54		32 .90 25	.00	•40			139	1
09/16/70	5050 5050			64.4F 18.0C		409	49	9.2	20 .87	1.4	.00	119		42	.00	.40		246 230	160 63	2
	F.4	2200	••				59	18	21	1	D 001	47	. \	29						
10/08/40		3200.		40.00	9.5		E	LACK BU				ELO (5E							155	
10/08/69	5050		10.1	62.0F 16.7C		329	••	••	5.0 .22 7		.00	127 2.08 63		2.3	.00	.10			155	1
105/69	5050 5050	13.87 159	10.7	53.0F 11.7C		324		••	6.7		.00	118 1.94 60		4.1 .12 4	.5	.00			150	140
12/03/69 1240	5050 5050			46.0F 7.8C		318			5.0 •22 7		.00	129 2•12 67		3.9 .11 3	.1	.20			155	1
01/07/70	5050 5050			38.0F 3.3C		182			3.4 •15		.00	91 1•49 82	••	.8	••	.10			84	6
02/04/70	5050 5050			46.0F 7.8C		147	••		3.2 •14 10		.00	72 1•18 80		.8	.2	.10			71	360
									10			90		1						

MINERAL ANALYSIS OF SURFACE WATER

03/11/70 1155 04/08/70 1210 05/13/70 1045	F6 5050 5050 5050 5050	3200.		45.0F	LASORA PH	EC	CA	MG	NA.	K	F	MILLIEQU PERCENT HCO3		ANCE V		В	F 102	TDS SUM	TH NCH	TURB	***
03/11/70 1155 04/08/70 1210 05/13/70 1045	F6 5050 5050 5050 5050	3200. 16.55 480	12.4					****										******	******	••••	***
04/08/70 1210 55/13/70 1045 506/10/70 5	5050 5050 5050	480		45.05			1	BLACK BU	TTE RIV	ER NEA	R COV	ELO (5H)	CONTIN	UED						
05/13/70 : 1045 : 06/10/70 :	5050 5050	15.92		7.20		145			3.4		.00	71 1•16		.5	.1	.10			67	210	
1045		140E	11.2	53.0F 11.7C	-	201			10 4.i .18		.00			.00	.1	.00			96	15	
	5050	15.68	11.1	55.0F 12.80		205		4.1	4.5	.8	.00		23	1.0	•1	.00		120 109	92 18	25	
	5 050 5050	15.20 38	9.4	66.0F	-	267	73	17	5.5 •24		.00	75 119 1•95		1.0	.1	.10			117	1	
	>050 5050	14.78	9.7 119	75.0F 23.9C		322			7.5 •33		3.0	73 126 2.07		1.0	.1	.00			153	0	
	5050 5050	15.08 4.5	9.3 112	73.0F 22.80		362			7.0 •30		.00	129 2•12		3.2	•0	•50			172	1	
	505 0 5050	14.58	10.1 113	66.0F		388			7.4 .32		•0	126 2.07		10	.1	.10			192	0	
	56	4100.0	0.0				T	ret. etve	8 R SOUTH	TOPK	WEAR !	53 MIRANDA ((7)	7							
	5050 5050	1.62		61.0F 16.1C		288			8.5 •37		.0	152 2.49		7.4	.1	.10			128	1	
	5050 5050	3.58 111	10.9	58.0F 14.4C		276			8.5 .37		.00	86 140 2.30		8.1 .23 8	.00	.10			124	2	
	5050 5050	3.61 95E		47.0F 8.3C		255			7.5 •33		.00	131 2•15 84		7.8	.1	•50	;		118	2	
	5050 5050		12.5	43.0F 6.1C		166	••	••	5.5 .24		.00	82		3.2		.10			72	32	
02/04/70 :	5950 5950	7.30 2240	12.0 106	49.0F 9.40	7.4 7.5	126			5.2 •23 18			65 1.07 85		3.3 .09	.3	.00			54	150	
	5050 5050	7.51 3550	11.8 107	51.0F 11.50	7.4 7.8	118			5.1 •22		.00	61		3.4	.3	.00			50	180	
	5950 5950	4.94	11.7	51.0F 12.5C	7.7 8.0	174			5.8 •25		.00	90		3.0	•00	.00			80	3	
	5J50	4.53 322	12.0	59.4F 15.0C	8.2	198	72 1.10 50	7.5 .62 .28	10	1.0	.00	102	11 •23 11	5.7 .16 8	•1	.10		115 108	86	3	
	5050 5050			56.0F 18.90		230	w=		8.5 .37 16		.00	125 2•05 89		4.0 .11 5	•1	.10			105	2	
	5050 5050	3.54 87	11.4	75.0F 23.90	8.4 8.1	255			9.8 .43		.00	132 2•16 85		5.4	.1	.10			109	1	
	5050 5050			79.0F 26.10		2 2 6			8.9 .39		.00	111		7.9 .22	•4	.20			95	1	
	5 150 5051	3. 0 9 29	11.6	65.0F	8.4 8.3	275			11 •48		.00	144 2•36 86		9.8 .28	•1	.20			126	1	
	F6	5300.	00				1	VAN DUZE		NEAR	BRIDG	EVILLE (5A)								
	5,150 5,150	4.47	11.5	61.0F 16.1C	H. 3 H. 3	305			8+0 +35 11		.00	150 2.46 H1		5.9 .17 6		.10			144	1	
	5050 5050	4.62	11.2	58.0F		269			6.6		.00	130 2•13 79		4.4 •12 4		.10			125	1	
	5050 5050	4.62	12.7	44.0F		252			5.2		.00	123 2•02 80		4.5		.20			118	1	
	5050 5050	5.43 33	13.3	47.0F 4.4C		152	-		3.1 •13		.00	76 1 • 25 82		1.4		.00			69	30	
	5 150 5 150	6.50 1180	12.5	44.1F 8.90		120			3.0		.00	62 1•02 85		1.0		.20			54	200	

OATE TIME	SAMPLER LAB	Q	SAT		РН	TORY	CA	RAL CO	NA	к	IN M	ILLIGRA ILLIEQU ERCENT HCO3	REACTA 504	ANCE V	R LITE ALUE NO3	H	F SID2	S PER L TOS SUM	ITER TH NCH	tura	
***************************************		5300.						N DUZEN	RIVER	NEAR I	BRIDGE	VILLE (5	5A) (CONTIN	UED						
03/10/70 1335	5050 5050			47.0F 8.3C		117			3.4 •15 13		.00	62 1.02 87		1.7		.00			53	160	
04/07/70 1310	5050 5050		11.6	55.0F 12.8C		175			3.8 •17 10		.00	89 1•46 83	~ *	2.5		.10			80	2	
05/12/70 1320	5050 5050		11.8	54.0F 12.2C		160	20 1.00 57	5.8 .48 28	5.5 •24 14	.02	.00	79 1 • 30 79	14 •29 18	2.2 .06 4	.2	.10		92 88	74	35	
06/09/70 1000	5050 5050		10.5	63.0F 17.2C		223			6.0 •26 12		.00	115 1.89 85		1.5	••	.00			108	4	
07/07/70 0930	5050 5050	4.66 27	9.8 109	69.0F 20.5C		272			7.8 •34 12		.00	14n 2•30 85		2.5		.00			126	0	
08/11/70 0930	5050 5050		9.0	69.0F 20.50		301			8.0 •35 12		.00	151 2•48 82		4.9 •14 5		.10			144	1	
09/15/70 1410	5050 5050			64.4F 18.0C		314	2.20 66	8.3 .68 21	8.9 •39 12	1.6 .04 1	.00	151 2•48 74	34 •71 21	5.2 •15 4	.00	.00		169 178	144	2	
	F7	1100.	00				ŀ	ATTOLE	RIVER 1	EAR P	ETROLL	A (7A)									
01/06/70 1320	5050 5050		12.9	42.0F 5.6C		146			5.1 .22 15		.00	64 1.05 72		3.4 .10 7		.10			53	47	
05/12/70 1135	5050 5050		11.6	58.0F 14.4C		198	26 1.30 63	4.6 .38 19	7.9 •34 17	1.0	.00	87 1.43 71	20 •42 21	5.7 .10 8	.00	.10		109	13	3	
09/15/70 1210	5050 5050		10.6	62.6F 17.0C			40 2.00 69	5.6 .46 16	8.9 •39 14	1.3	.00	125 2.05 71	33 •69 24	5.2 .15 5	.01	•00		150 157	123	3	
	F7	5100.	00				1	BEAR RI	VER NEAL	R CAPE	TOWN (7B)									
01/06/70 1235	5050 5050		12.7	43.0F 6.10		231			9.0 .39 17		.00	94 1•38 60		.31 .13		.10			91	33	
05/12/70 1100	5050 5050	40E	11.4	56.0F 13.3C	-	237	32 1.60 68	4.9 •40 17	7.8 •34 14	1 • 1 • 0 3 1	.00	89 1.46 61	.71 .30	7.8 .22 9	.00	.20	* **	163 133	100	50	
09/15/70 1135	5350 5350		10.5	66.2F 19.0C		343	51 2.54 72	5.8 .48 14		1.6 .04	.00	148 2•43 69	.94 .26	7.5	.00	.10		196 196	151	2	

TRACE ELEMENT ANALYSES OF SURFACE WATER

North Coastal Area

	STATION					CONS	CONSTITUENTS	NTS IN		MICROGRAMS	S PER	LITER	~					
STATION	NUMBER	DAIE	(AI)	(Be) ((Bi) (Cd	(Co) (P:	(Cr)	(Cu)	(Fe)	(09)	(Ge)	(Mn)	(Mo)	(N)	(Pb) ((IT)	(>)	(Zu)
Eel River above Outlet Creek (5d)	F61329.50	5-13-70	4.1>	> 9.0>	<0.3 <1.4	4 <1.4	<1.4	<1.4	17	<5.7	< 0.3	<1.1.4 ✓1.4	< 0.3	<0.3 <1.4		9.0>	0.5	<5.7
Eel River, Middle Fork, at Dos Rios (5c)	F63010.00	5-13-70	4.1>	> 9.0>	<0.3 <1.4	4 <1.4	<1.4	<1.4	15	<5.7	<0.3	<1.4	<0.3	<1.3 <1.4		0.0>	0.6	<5.7
Eel River at Scotia (6)	F61100.00	5-12-70	47.7	> 9.0>	<0.3 <1.4	4 <1.4	4.1.4	<1.4	6.3	< 5.3	<0.3	4.1>	<0.3	<0.3 <1.4		0.0>	9.0	<5.7
Klamath River below Iron Gate Dam (1f)	F31600.00	5-12-70 8- 3-70	4.1.7	\$0.6 \$0.6 \$0.6	<0.3 <1.4 <0.3 <1.4 <1.4	4.1.7	4:17	4.1.4 7.1.4 7.1.4	29.	×5.7 ×5.7	× × × × × × × × × × × × × × × × × × ×	4.1.4 <1.4 <1.4	<0.3 2.1	<0.3 <1.4 <1.0 <1.4			7.7	<5.7 <5.7
Klamath River near Klamath (3)	F31100.00	5-11-70	7.1.4	9.00	<0.3 <1.4 <0.3 <1.4 <1.4	4.1.4	4.1.4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.8 8.6	<5.7 <5.7	× 0.3 × 0.3	< 1. t < 1. t < 1. t < 1. t	× 0.3 × 0.3	<0.3 <1.4 0.7 <1.4		0.06 0.6	1.0 1.1	<5.7 <5.7
Mamath River at Orleans (2c)	F31220.01	5-11-70 9-14-70	7.7.7	9.00	<0.3 <1.4 <0.3 <1.4 <1.4	4.1.4	4.1.7	7.7. VV	7.4	<5.7 <5.7	× 0.3 × 0.3	4:15	× 0.3	5.1 <1.4 0.8 <1.4		0.6	1.4	<5.7 <5.7
Klamath River near Seiad Valley (2b)	F31430.00	5-12-70	\$1.4 14	9.00	<0.3 <1.4 <0.3 <1.4 <1.4	4.1.7	4.1.4 7.1.4 7.1.4	***** \\\\	51 46	<5.7 <5.7	× 0.3 × 0.3	<1.th	× 0.3 × 0.3	0.3 <1.4 2.1 <1.4			2.9	<5.7 12
Mad Elver near Arcata (6a)	F51100.00	5-12-70	8	> 9.0>	<0.3 <1.	4.1> 4.	47.7	<1.4	83	<5.7	< 0.3	4.1>	<0.3	6.0 <1.4		9.0>	0.7	<5.7
Trinity River near Hoopa (4)	F41090.00	5-11-70	4.1.4 2.3	6.05	<a> <a> <a> <a> <a> <a> <a> <a> <a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><	4:1.	1.t <1.t <1.t <1.t	4.1.4 4.1.4 7.1.4	114	<5.7 <5.7 <5.7	× × × × × × × × × × × × × × × × × × ×	4.4. 7.1.4.	× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	<0.3 <1.4 1.4 <1.4		9.0>	0.0	<5.7 <5.7
						1												
Kesults are less than the amount indicated.	BBA	Al - Aluminum Be - Beryllium Bi - Bismuth	um 1 um h	11/2	Cr Cu Pe	- Chromium - Copper - Iron		CONST	CONSTITUTION	Ge - Gern Mn - Mang Mo - Moll	Germanium Wanganese Molybdenum			Pb - Lead Ti - Tita V - Vana	Lead Titenium Vanadium			

TABLE D-4

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

NORTH COASTAL AREA

Station Number	Station	Date Time		Constituents in mg/l	*	Samp	Lo
			Fe	Li	Sr		
F31100.00	KLAMATH RIVER NEAR KLAMATH (3)	10-07-69	0.03	⟨0.01	0.15	5050	500
		11-04-69	0.05	< 0.01	0.13	5050	500
		12-01-69	0.01	<0.02	0.12	5050	50
		1-05-70	0.04	< 0.02	0.09	5050	50
		2-03-70	0.02	< 0.01	0.09	5050	50
		3-10-70	0.05	< 0.01	0.09	5050	50
		4-07-70	0.08	< 0.01	0.08	5050	50
		5-11-70	0.02	< 0.01	0.06	5050	50
		6-08-70	0.01	< 0.01	0.09	5050	50
		7-06-70	0.00	<0.01	0.06	5050	50
		8-10-70	0.00	< 0.01	0.16	5050	50
						1	_
		9-14-70	0.00	< 0.01	0.14	5050	50
F61100.00	EEL RIVER AT SCOTIA (6)	10-07-69	0.01	< 0.01	0.63	5050	50
		11-04-69	0.02	< 0.01	0.45	5050	50
		12-02-69	0.00	< 0.02	0.45	5050	50
	•	1-06-70	0.03	< 0.02	0.25	5050	50
		2-03-70	0.01	< 0.01	0.23	5050	50
		3-10-70	0.05	< 0.01	0.20	5050	50
							50
		4-07-70	0.04	〈 0.01	0.32	5050	1
		5-12-70	0.01	(0.01	0.21	5050	50
		6-09-70	0.01	< 0.01	0.43	5050	50
		7-07-70	0.00	< 0.01	0.35	5050	5
		8-11-70	0.00	< 0.01	0.53	5050	5
		9-15-70	0.00	< 0.01	0.46	5050	5
	All the second s	1					
	the second						
	10000						

^{*} Fe - Iron Li - Lithium Sr - Strontium

< The results are less than the amount indicated

TABLE D-5

NUTRIENTS IN SURFACE WATER

Abbreviations and Chemical Codes

NITROGEN SERIES

NO₃ - Nitrate

NO₂ - Nitrite

ORG - Organic Nitrogen

NH₎, - Ammonium

TOTAL - Total Nitrogen

N - Nitrogen

PHOSPHATE SERIES

ORTHO - Ortho Phosphate (Not filtered)

HYDRO - Hydrolizable Phosphates (Not filtered)

TOTAL - Total and Organic Phosphates (Not filtered)

MISCELLANEOUS NUTRIENTS

CODE - KN Kjeldahl Nitrogen

RP Reactive Phosphate (Not filtered)

UR - M Milligrams per liter

MY Less than value indicated in milligrams per liter

SAMP - Codes for agency collecting sample

5050 - Department of Water Resources

<u>LAB</u> - Codes for laboratory performing analysis

5050 - Department of Water Resources laboratory at Bryte

TABLE D-5

NUTRIENTS IN SURFACE WATER

Date		Nitro	ogen Ser		nts (Mg/L)	Phospho	ate Series	s os P	_	cellaneou Nutrients	s		
Time	NO ₃	NO ₂	Org	NH ₄	Total	Ortho	Hydro	Total	Code	Value	UR	Somp	Lob
11-17-69 1-12-70 3-09-70 5-12-70 7-13-70 8-03-70 8-31-70	F31470.0 KLAMATH (lc)	OO RIVER ABO	OVE HAMBI	JRG RESERV	OIR SITE	0.13 0.10 0.02 0.04 0.10 0.10						5050 5050 5050 5050 5050 5050 5050	505 505 505 505 505 505 505
10-15-69 11-17-69 12-08-69 1-12-70 2-09-70 3-09-70 4-14-70 5-12-70 6-16-70 7-13-70 8-03-70	F31600.0 KLAMATH 0.44 0.07	OO RIVER BEI	OW IRON	GATE DAM	(lf)	0.21 0.12 0.12 0.09 0.08 0.02 0.07 0.04 0.12 0.12 0.12						5050 5050 5050 5050 5050 5050 5050 505	505 505 505 505 505 505 505 505 505 505
10-14-69 11-17-69 12-08-69 1-12-70 2-09-70 4-14-70 5-12-70 6-16-70 7-13-70 8-03-70 8-31-70		OO RIVER NEA	R SEIAD	VALLEY (2	2b)	0.19 0.11 0.12 0.09 0.07 0.03 0.03 0.01 0.06 0.06 0.06 0.12						5050 5050 5050 5050 5050 5050 5050 505	505 505 505 505 505 505 505 505 505
10-07-69 11-04-69 12-01-69 1-05-70 2-03-70 3-10-70 4-07-70 5-11-70 6-08-70 7-06-70 9-14-70	F31100.C	OO RIVER NEA	R KLAMA	гн (3)		0.49 * 0.40 * 0.24 * 0.28 * 0.04 * 0.62 * 0.41 * 0.04 * 0.14 * 0.09 * 0.28 * 0.26 *						5050 5050 5050 5050 5050 5050 5050 505	500 500 500 500 500 500 500 500 500

^{*} Reported as (PO_{4}) Ortho Phosphate

TABLE D-5 (CONT)

NUTRIENTS IN SURFACE WATER

Date		B1	itragen Seri		ts (Mg/L)	Phaseh	nto Corios	25. P.	_	cellaneous	;		
Time	NO ₃	NO ₂	Org	NH ₄	Total	Ortho	te Series Hydro	Total	Code	Nutrients Value	UR	Samp	Lab
10-06-69 11-03-69 12-01-69 1-05-70 2-02-70 3-09-70 4-06-70 5-11-70 6-08-70 7-06-70 8-10-70 9-14-70	F41090	.00 Y RIVER A	AT HOOPA (4	<u></u>		0.01 0.01 0.00 0.00 0.01 0.00 0.02 0.00 0.00						5050 5050 5050 5050 5050 5050 5050 505	5050 5050 5050 5050 5050 5050 5050 505
11-03-69 1-05-70 3-09-70 5-11-70 7-06-70 9-14-70			AT LEWISTON	(4a)		0.00 0.00 0.00 0.00 0.00				1		5050 5050 5050 5050 5050 5050	5050 5050 5050 5050 5050 5050
11-03-69 1-05-70 3-09-70 5-11-70 7-06-70 9-14-70	F41376 TRINIT		VEAR BURNT	RANCH (4b)	0.00 0.00 0.00 0.00 0.00						5050 5050 5050 5050 5050 5050	5050 5050 5050 5050 5050 5050
10-08-69 11-05-69 12-03-69 2-04-70 3-11-70 4-08-70 5-13-70 6-10-70 7-08-70 8-12-70 9-16-70	F63010 EEL RI		OLE FORK,AT	DOS RIOS	(5e)	0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00						5050 5050 5050 5050 5050 5050 5050 505	5050 5050 5050 5050 5050 5050 5050 505
10-08-69 11-05-69 12-03-69 2-04-70 3-11-70 4-08-70 5-13-70 6-10-70 7-08-70 8-12-70 9-16-70			E OUTLET CR	EEK (5d)		0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00						5050 5050 5050 5050 5050 5050 5050 505	5050 5050 5050 5050 5050 5050 5050 505

TABLE D-5 (CONT)

NUTRIENTS IN SURFACE WATER

Date		Nit	rogen Ser		s (Mg/L)	Phosph	ote Series	as P	_	cellaneou lutrients	s		
Time	NO ₃	NO ₂	Org	NH ₄	Total	Ortho	Hydro	Total	Code	Value	UR	Samp	Lab
	F63050.			1 7					Code	volue	UK		
0.01.50			COVELO (5e)									
2-04-70 3-11-70						0.02						5050 5050	5050 5050
4-08-70 5-13-70						0.03						5050	5050
6-10-70	-6					0.03						5050	5050 5050
	F63120.	oo Er, middi	E FORK,										
10-08-69	ABOVE B	LACK BUTI	TE RIVER ((5g)		0.01						5050	5050
11-05-69						0.01						5050 5050	5050 5050
12-03-69 2-04-70						0.00						5050 5050	5050 5050
3-11-70						0.00						5050	5050
4-08-70 5-13-70		•				0.01						5050 5050	5050 5050
6-10-70						0.00						5050	5050
7-08-70 8-12-70						0.00						5050 5050	5050 5050
9-16-70	F63200.0	00				0.00						5050	5050
			ER NEAR CO	VELO (5h)									
10-08-69						0.01						5050	5050
12-03-69						0.02						5050 5050	5050 5050
2-04-70 3-11-70						0.01						5050 5050	5050 5050
4-08-70						0.01						5050	5050
5-13-70 6-10-70						0.00						5050 5050	5050 5050
7-08-70						0.00						5050	5050
8-12-70 9-16-70						0.00						5050 5050	5050 5050
	F61100.0		MT4 (6)										
10-07-69	FET KIA	ER AT SCO	TIA (0)			0.10 *						5050	5000
11-04-69 12-02-69						0.04 *						5050 5050	5000 5000
1-06-70			`			0.26 *						5050	5000
2-03-70 3-10-70						0.23 *						5050 5050	5000 5000
4-07-70						0.30 *						5050	5000
5 - 12-70 6 - 09-70						0.00 *						5050 5050	5000
7-07-70						0.00 *						5050 5050	5000 5000
9-15-70						0.09 *						5050	5000
	F64100.0		FORK. NE	AR MIRANDA	(7)								
10-07-69		,	,			0.00						5050	5050
11-04-69 12-02-69						0.01						5050 5050	5050 5050
2-04-70						0.02						5050	5050
3-10-70 4-08-70						0.01						5050 5050	5050 5050
5-12-70 6-09-70						0.00						5050	5050
7-07-70						0.00						5050 5050	5050 5050
8-11-70 9-15-70						0.00						5050 5050	5050 5050
7 -10						3.00						70,00	7070
* Report	ind on (D												

^{*} Reported as (PO1) Ortho Phosphate

APPENDIX E

GROUND WATER QUALITY

This appendix presents ground water quality data collected during the period from October 1, 1969, through September 30, 1970. The data were collected from a number of major ground water sources in the North Coastal area in cooperation with local agencies. During the 1970 water year, 74 wells were sampled in 11 ground water basins.

At the time of field sampling, pH, specific conductance, and temperature measurements are normally made. Comments on local conditions are noted in field books which are available in the files of the Department of Water Resources.

Laboratory analyses of ground waters were performed in accordance with "Standard Methods for the Examination of Water and Waste Water", 12th Edition.

The Region and Basin and State Well Numbering Systems are described in Appendix C, "Ground Water Measurements".

TABLE E-1 MINERAL ANALYSES OF GROUND WATER

An explanation of column headings follows:

The LAB and SAMPLER agency code is as follows:

5050 - California Department of Water Resources

TIME - Pacific Standard Time on a 24-hour clock.

TEMP - Water temperature in degrees Fahrenheit at the time of field sampling. Water temperature in degrees Celsius is computed from degrees Fahrenheit.

PH LAB & FIELD - Measure of acidity or alkalinity of water.

- The electrical conductance in micromhos at temperature when sampled.

TDS - Gravimetric determination of total dissolved solids

at 180° Celsius.

SUM - Total dissolved solids determined by addition of

analyzed constituents.

TH - Total hardness.

NCH - Noncarbonate hardness.

SAR - Sodium adsorption ratio.

The MINERAL CONSTITUENTS are as follows:

- Boron - Potassium B K CA - Calcium MG - Magnesium NA CL - Chloride - Sodium F^{CO}3 - Carbonate NO2 - Nitrate - Fluoride SIO2 - Silica HCO₂ - Bicarbonate SO₁, - Sulfate

TABLE E-1

MINERAL ANALYSIS OF GROUND WATER

04TE T1ME	SAMPLEH LAH		LAHON	YEUTA	MINE	HAL CO	NSTITU	FNT5	IN M	ILLIGR	UIVALE	NTS PE	RLIT	FH		S PER L		
•••••		· · · · · · · · · · ·	PH	•••••	CA	M(;	NA	K	C03	HC03	REACT 504	ANCE V	NO3		F 5102	TDS 5UM	TH NCH	\$4R
	1-01-00 16N/01W-02Q01	н			٤	MITH RI	VER PLA	IN										
06/24/70 1500	5050 5050	62.0F 16.7C			9.8 .49 31	7.9 .65 41	9.4 •41 26		.00	76 1.25 86		6.9 .19 13		.00		95 74	5/	2
06/24/70 1400	16N/01w-20H01 5J50 5J50								.00	36 •54 347		16 .45 265	11 .18 106				43	
06/24/70 1430	16N/32W-13E01 5050 5050	M 5H+0F 14-4C		280	11 •55 21	9.4 .77 29	30 1.31 49	1.4	.00	69 1•13 44	10 •21 8	42 1.18 46	1.8	.00		157 140	66 10	5
06/25/70 1015	17N/01w-03E01 5050	H 58.0F 14.4C	6.K	340														
06/24/70 0940	17N/01w-14C02 5050	H 50.0F 15.5C	6.3	190														
06/24/70 1745	16N/J1W-95K01 5050	H 59.0F 15.0C	5.9	170											==			
06/24/70 1635	18N/31w-17R04 5050	H 62.0F 16.7C	7.n	278									••					
06/25/70 0910	18N/91w-26H01 5050 5050			83 85					.00	40 •66 708	••	4.1 .12 129	••				34	
06/25/70 1000	18N/01W-34M02 5050	H 57.0F 13.9C	6.6	340														
	1-03.00					BUTTE V	ALLEY											
07/06/70 1820	45N/01E-09C02 5050		7.7	182				••					••					
07/06/70 0805	45N/02W-01P01 5050 5050	50.0F 10.0C	6.3	225 214					.00	98 1.61 686		1.6	••				92	
07/06/70 0950	46N/J1w-06P01 5050 5050	53.0F 11.7C	7.3 7.8	625 600			37 1.61 245			323 5.30 806		8.4 .24 36	••				243	
07/06/70 0935	46N/U1W-17801 5U50 5050		8.2	360 348	21 1.05 27	16 1.32 34	33 1.44 37	4.8	.00	222 3.64 95	3.4	3.5 .10 3	1.9	.00		198 195	119	4
07/06/70 0925	46N/01w-17L01 5050 5050	55.0F 12.8C		460	32 1.60 33	26 2.14 44	.96 20	.13	.00	260 4.26 90	15 •31 7	4.5	.01	•00		258 236	189 26	2
07/06/70 0900	46N/02w-16A02 5050	57.0F 11.1C	8.0	185									••					
07/06/70 1030	47N/31E-32A01 5050	M 71.0F 21.6C	8.2	195							••	••	••					
07/06/70 1110	47N/01W-23H02 5050 5050	66.0F	7.7 H.C	250 237	6.2 .31 13	6.4 .53 22			.00	119 1.95 82	.00	8.4 .24 10	11 .18 8	.10	••	164 131	42 56	6
07/06/70 1145	47N/32W-21H03		7.1 7.5	110 105	5.2 .41 36	5.7 .47 41		1.6		61 1.00 93	.00	1.6	1.4	-00	••	100	44	1
07/06/70 1400	4HN/11E-30F01 5050	57.0F 13.9C	7.7	360								••	••		••			
07/06/70 1500	48N/01E-31003 5050 5050	M 73.0F 22.8C	8.4 8.3	460 452	3.4 .17 3	2.6	99 4.31 87	11 .28 6	.00	273 4.48 92	.00	9.1 .26 5	.15	•50		294 272	19 205	29
07/06/70	48N/01W-28J01 5350 5350	M 53.0F 17.2C	7.7	405 397						237 3.89 894		5.5 .16 37					155	
07/06/70 1430	4HN/01W-36J01 5050 5050	M 61.0F 16.1C	7.4 7.7	1400	26 1.30 9	73 6.00 39	165 7-18 47	30 .77 5	.00	790 12.96 85	52 1.08 7	30 .85	.18 .18	.20		773 782	367 283	12

MINERAL ANALYSIS OF GROUND WATER

						NU	RIH C	UASI	AL A	REA								
TIME	SAMPLER LAB		LAHOR PH	EC	CA	MG	NA	к	IN M	ILLIEQUERCENT HCO3	UIVALE	NTS PE	R LITE	ER 8	F	TDS SUM	Тн	5AR
*****		****	****		~~~	****	*****	****	****		*****	*****	****	****	*****	*****	******	****
	1-04.00 42N/05W-20J01	м				SHASTA	VALLEY											
07/07/70 0755	5050 5050	57.0F 13.90	6.8 7.0	360 363	18 •90	25 2.06 51	•96	.10	.00	228 3.74 95	.01	6.0 .17 4	.00	.10		226 190	149 39	
07/07/70 0830	42N/06W-10J01 5050 5050	M 57.0F 13.90	7.3 7.6	460 457	9.6 .48	58 4.77 88	.14	.01	.00	314 5.15 97	•03	3.0	• 06	.00		251 237	265 5	0
07/07/70 1040	43N/05W-02C01 5050 5050	53.0F	6.5 7.0	242 272	.70	12	16 •70	2.5	.00	124	2.8	8.6	1.1	•10		161 119	83 17	
07/07/70	43N/16W-21R01 5050	M 63.0F 17.20	7.5	470	29 	40	29	2		86	3	10	1					
0900		17.26																
07/07/70 0950	44N/95w-32C02 5050 5050	62.0F	7.3 7.5	1010	45 2•25 19	5.43	3.83	.12	.00	547 8.97 79	18 • 37 3	1.97	2.2	•90		594 568	382 65	6
07/07/70 0950	44N/05w=32C03 5950 5950	M 52.0F 15.7C	7.3 7.9	1000 988			80 3.48 321		.00	542 8.89 821		62 1.75 162			==		378	
07/07/70 1015	44N/15w-34H01 5050 5050	M 58.0F 14.4C	7.0 8.4	730 705	50 2.50 31		47	7.2 .18 2		390	14 •29 4	26	17 •27 3	.40		445 400	288	4
07/07/70 0920	44N/96W~22K01 5050	M 69.0F 20.50	7.1	475														
	45N/35W-06E01	М												-				
07/07/70 1120	5950 5150	64.0F 17.8C	8.9	961 974	5.4 •27 2	4.5 .37 3	242 10.53 94	1.6	.90 .8	574 9•41 84	•00	.82 .7	1.5	8.20	5.5	608 606	32 484	54
07/07/70 1045	45N/06W=19E01 5050 5050	65.0F 18.30	7.5 8.3	340 346	23 1.15 32		1.44	.02	.00	174 2.85 77	36 .75 20	2.4	.5	•10	==	176 195	107 36	4
	1-05-30					SCOTT 1	RIVER VA	LLEY										
07/07/70 1445	1-05-30 42N/19w-27k01 5050	M	6.1	58				-		••					==			
07/07/74	43N7.9#=02001 5050	SH.OF	7.1	487		27	4.9	1.9	• 0	287	12		7.1	•00		226	251	
	7.3M7 13m=4m4 m1	14.4C			53	2.27 42	•21		.00	4•71 91	• 25	.08 2	.11		••	255	15	0
07/07/70 1600	5050	67.0F 19.40	6.3	108														
07/07/70 1400	43N7,9%-24F02 5/50 5/50	M 57.1F 13.90	7.0 7.2	382 379	38 1.90 45	26 2.14 50	4.2 •18 4	.03	.00	240 3.94 95		.05		.00	==	206 199	203	
07/07/70 1510	43N/09W-29G02 5050	M 66.0F 18.90	5 € 1	59											==			
07/07/10 1530	43N/10w-11E01 5050	M 62.0F 16.70	6.5	83														
07/07/70	44N/ 9%-34KG1 5 5C 5 %c	M 71.0F	6.H	312	39	14	5.6	1.0	•0	170	7.4	2.1	16	.00		179 170	156 16	
20.0		77470	• •	77.0	ካለ	54	7	1	•00	86	5		8			1.0		i
06/24/70 0940	1-08-40 95NZ 11E-04H04 5050			430		MAD RIV												
06/22/70 1645	\$68271E-07M01 5550 5057	H 50.0F 15.50	6+3 7+6	540 517					.00	246		16			==		233	
06/22/70	1607)]F=08H0] 5350 5350	H 57.0F 14.90	6.1	205 204					.00	711 51		79 16 .45	3.0				60	
										376		201	55					

MINERAL ANALYSIS OF GROUND WATER

DATE	SAMPLER LAS			LD ATORY EC	MINE	RAL CO	NST 1 TU		IN M	ILLIGRA ILLIEGO ERCENT HCD3	REACT	NTS PE	R LIT	8	F	TDS SUM	TH NCH	SAR
••••••		••••••	•••••	•••••	•••••	MG	NA	•••••	••••	MC03	504	CL	NO3	•••••	5102	SUM	NCH	5AH
	1-08-00 06N/01E-17D01	н			1	MAD RIVE	R VALLI	ΣΥ				CONTIN	UED					
06/22/70 1705	5050	56.0F 13.3C	6,3	435	••					••								
06/22/70 1720	06N/01E-19001 5050	H 58.0F 14.4C	6,5	375				••		••	••							
06/24/70 1015	06N/01E-30N01 5050	H 56.0F 13.3C		365		••				• ~								
06/24/70	06N/01E-32F01 5050	H 65.0F	7.4	680					- 0	283		, 85					8.3	
0955	5050	18.30	7.8	708					.00	4.64 598		309					03	
06/22/70 1350	06N/91W-01H01 5050	60.0F 15.5C	6.1	190											==			
06/23/70	1-09-00 04N/01W-08P01 5050	H 55.0F	7.7	155		EUREKA 1	PLAIN	~ si										
0820	,0,0	12.80	•••															
06/23/70 1600	04N/01W-16H01 5050	57.0F 13.9C	7.5	500				••										
06/23/70 0835	04N/01W-17801 5050	55.0F 12.8C	7.1	165														
	05N/01E-18001	н																
06/24/70	5050 5050	62.0F 16.7C	7.3 7.4	780 801	.95 11	14 1,15 14	143 6,22 73	5.7 .15 ?	.00	330 5.41 65	.00	99 2,79 34	3.5 .06	1.20		468 450	104 166	18
06/24/70 0835		55.0F 12.8C		270														
06/24/70	05N/01W-29Q01	58.0F	6.5	<85					.0	76		24 ,68	31				M 4	
1045	5050	14.40	7.5	291					.00	1 • 25 392		213						
	1-10-00 02N/01W-04D01	н				EEL RIVI	ER VALL	ΣΥ										
06/23/70 ·1200	5050	58.0F 14.4C	7.0	538														
06/23/70 1250	C2N/01 = -07F01 5059 5050	H 54.0F 12.2C	7.1 7.9	460 472					.00	194 3•18 614		23 .65 126					190	
1500	5050 02N/01W-12U04	63.0F	7.6	157														
06/23/70 0920	5050		6.1	152 147	6.8 .34 24	5.4 .44 31		1.1	.00		2.3 .05 4	14 •39 30	.00	•00		99 70	34	3
06/23/70 1040	03N/01W-18A01 5050	H 59.0F 15.0C	7.0	470						••								
06/23/70 1120	03N/91w-30N01 5050		6.5	545											~~			
	03N/02W-32401	н																
06/23/70 1335	5050	55.0F 13.3C		960						•=		•						
06/23/70	03N/02w-35H01 5050 5050	56.0F 13.3C	7.1 7.1	7H0 766	30 1.50 18	32 2.63	85 3.70	.31	.00	30H 5.05 63	.71	75 2.12 27	5.2	•00	==	425 427	204	ы

MINERAL ANALYSIS OF GROUND WATER

DATE	SAMPLER LAB	TEMP	FIE	LO	MINE	ERAL CO	NSTITE	IENTS	IN	MILLIGO MILLIEO PERCENT HCO3	AMS PE	A LITE	R R LITI	ER MIL	LIGR44	S PER	LITER	
			PH	EC						PERCENT	REACT	ANCE Y	ALUE	8	F	TDS	TH	
******	••••••						N4	K	CO3						2105		NCH	SAR
	1-11 00					ROUND VA	YATA											
	1-11.00 22N/12w-06L02 5050	М				10011												
05/21/70	5050	59.0F	7.5	450														
0940		15.0C																
	22N/13w-01J03	ч																
05/20/70	5050	63.0F	7.2	228														
1630	5050	17.20																
05/20/70	22N/13W-13401	42 AF	7 0	220	10	12	12			116	12	0.0	2.5	.40		131	97	
1700	5050 5050	16.70	7.8	237	.95	.99	.52	.02	.00	1.90	.25	.23		.40		125	2	2
					38	40	21	1		79	10	10						
	23N/12w-33L03	н																
05/21/70	5050	60.0F	7.1	595					18	373		2.9					291	
1020	5050 5050	15.50	8.6	597						6.12		.08						
									92	935		12						
	23N/13W-25P01																	
05/21/70	5050	57.0F		235														
V043		13.76																
	23N/13w-36P03	м																
05/21/70	5050	50.0F	6.8	250														
0915		15.50																
	1-13-00					LAYTONVI	TIJE VA	LLEY										
	1-12-00 21N/14H-30M01	м																
05/20/70	5050 5050	58.0F	6.3	205		••			.0			B.4					78	
1350	5050	14.4C	8.2	204					.00	1.87 836		107						
										039		10.						
	21N/15W-01F05	H																
05/20/70	5050 5050	62.0F	7.4	415	2.35					268 4.40			1.1	.40		244	198	2
*354	3030	10016	0.0	+33		33	18			92	1	7	.02			230	2.	2
	21N/15W=12M02	м																
05/20/70	5050	56.0F	5.5	55														
1500		13.30																
	1-13-00					INCOME I	LAKE VA	LLEY										
	18N/13W-08L01	Н																
05/20/70	5050 5050	58.0F	6.1	280					.0	148		6.9			••		110	
1510	5050	14.40	7.9	285					.00	2.43 786		.19						
05/20/70	18N/13W-20H03	H	6 1	222						125		4 0					100	
1250	5050 5050	12.80	7.8	222		••			.00	2.05		4.0					100	
										850		46						

TABLE E-2

TRACE ELEMENT ANALYSES OF GROUND WATER

NORTH COASTAL AREA

		Constituents in parts per million									
State Well Number	Date	As	Cd	Cu	Fe (Total)	РЬ	Mn	Se	Zn		
		BUTTE	VALLEY	(1-3.0	00)						
46n-1w-6P1 46n-2w-16A2 48n-1w-28J1 48n-1w-36J1	7-6-70 7-6-70 7-6-70 7-6-70	0.00 0.00 0.00 0.01									
		SHASTA	VALLEY	(1-4.0	00)						
43N-5W-2C1 44N-5W-32C3	7-7-70 7-7-70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
44N-5W-34H1	7-7-70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

CONSTITUENTS

As	Arsenic	Fe	Iron	Se	Selenium
Cd	Cadmium	Pb	Lead	Zn	Zinc
Cu	Copper	Mn	Manganese		

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

BOOKS REQUESTED BY ANOTHER BORROWER ARE SUBJECT TO RECALL AFTER ONE WEEK.
RENEWED BOOKS ARE SUBJECT TO
IMMEDIATE RECALL

JAN 5 1978

DEC 21 RECD

75 5 273

JAN 29 REC'D

JUL 4 1500

JUL 4 1985

RECEIVED

THE SELVE L

PESE PARTE C

JUN 25 1987

JUN 3 0 1988/

PH'SE'ILIBEAR

JUN 1 6 1989

JUN 00 1939 RIC'D

JUNE 2 1985

PHYS SCI LIBRARY

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-Series 458

NAY 14

NE D 183

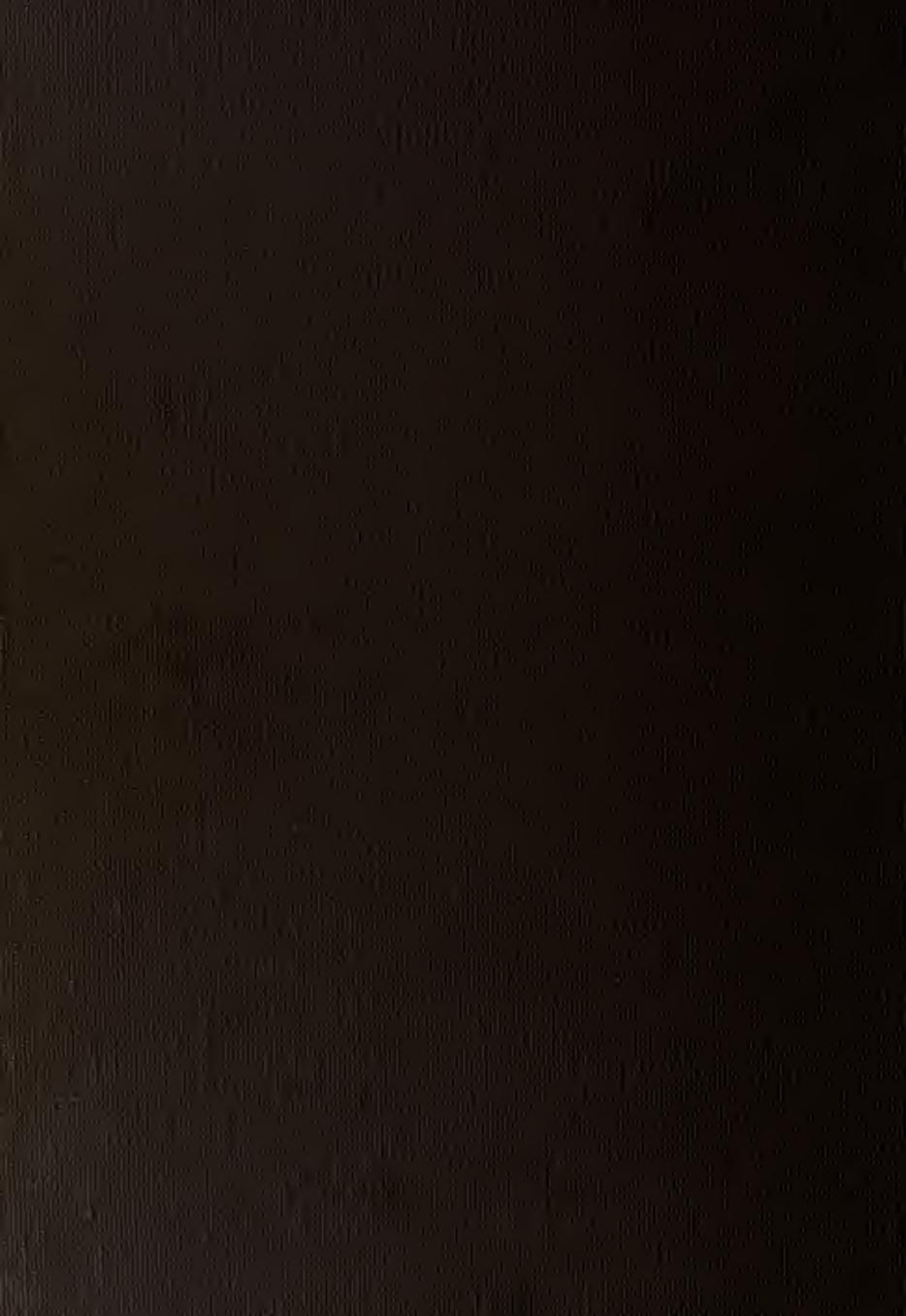

```
TC California. Dept. of Water Resources.

824 Bulletin.

C2

A2

NO. 130: 70


V. 1-3

Appl. 4 F

PHYSICAL

SCIENCES

LIBRARY
```

